Alle Beiträge von Hermann Apfelböck

MX Linux (19.2)

August 2020: Seit Monaten herrscht auf Platz 1 der Rangliste von Distrowatch eine Distribution, der man eigentlich nur eine Nischendasein zutraut: MX Linux. Was sind die Gründe für das offensichtlich große Interesse an diesem System?

MX-Linux
MX Linux: Ein sehr hübscher XFCE-Desktop auf Debian Stable, eine Vielzahl von Desktop- und Systemtools sowie Spezialisierung für den Live-Betrieb sind die Kennzeichen dieses Systems.

Die nur auf sich selbst bezogene Klickperformance von distrowatch.com sollte niemand überschätzen. Platz 1 auf Distrowatch ist kein Indiz für die tatsächliche Verbreitung einer Linux-Distribution. Dennoch ist dies für uns Anlass genug, einen genaueren Blick auf MX Linux zu werfen. MX Linux wurde im Frühsommer auf Version 19.2 aktualisiert, erhielt aber schon vorher diese erstaunliche Beachtung. Die Heft-DVD liefert MX Linux 19.2 in der 64 Bit-Variante mit. Die 32-Variante sowie eine Spezialvariante für sehr alte Hardware erhalten Sie unter https://mxlinux.org/download-links/.

Was kennzeichnet MX Linux?

Die Basisrezeptur von MX Linux ist nicht aufregend: Die Systembasis stellt ein konservatives Debian Stable 10 („Buster“), und als Desktop arbeitet ein ebenso konservativer XFCE 4.14. Linux-Kernel und vorinstallierte Software sind nicht mehr taufrisch, aber halbwegs aktuell. Der MX-eigene Installer ist funktionsarm und eigentlich nur für die Installation als alleiniges System zu empfehlen, Systemverschlüsselung mit Cryptsetup ist aber komfortabel integriert. Im installierten MX Linux finden Sie für die Softwareverwaltung die relativ spröden Alternativen MX Paket-Installer (mit Flatpak-Integration) oder Synaptic oder den noch spröderen Antix-Terminalinstaller oder schlicht das Terminalprogramm apt. Bei systemnahen Aktionen muss der Nutzer zwischen sudo-Benutzerkonto und root-Konto unterscheiden – in vielen Fällen ist tatsächlich das root-Konto notwendig. Ebenfalls ungewöhnlich ist, dass Sie bei größeren Updates eventuell erneut nach dem Ort des Grub-Bootloaders befragt werden – in der Regel „sda“. Die Software-Ausstattung ist opulent, die Fülle der zusätzlichen, zahlreichen Systemtools aber erst einmal unübersichtlich bis verwirrend, zum Teil redundant.

System- und Desktop-Werkzeuge: Damit sind wir aber an dem Punkt, wo die Waage bei MX Linux ins Positive kippt: Die Distribution ist mit Sorgfalt und Liebe zum kleinsten Detail ausgestattet, der XFCE-Desktop zeigt sich bereits ab Installation von seiner feinsten Seite. Aber die vielen MX-eigenen System- und Einstellungstools fördern darüber hinaus die Anpassung zu einem individuellen Desktop. Die „Einstellungen“ des Xfce4-Settings-Manager gehen über den üblichen Umfang deutlich hinaus: Neben eingebauten externen Tools wie System-Config-Samba (grafische Samba-Verwaltung) kommen vor allem MX-Eigenentwicklungen hinzu. „MX-Tweak“ ist einschlägig für die optimale Bildschirmskalierung (neben dem üblichen „Anzeige“-Applet), „MX-Werkzeuge“ (mx-tools) präsentiert eine opulente Sammlung von Systemwerkzeugen. Manches ist marginal, manches wie das Löschtool MX-Cleanup oder der MX-Menü-Editor auch in besserer Ausführung zu finden, aber unterm Strich bietet die Toolsammlung wirklich alles, was man an System- und Anpassungswerkzeugen erwarten kann. Die Sammlung von Conky-Desktopinfos (auswählbar mit dem Conky Manager) oder die grafische Bearbeitung der Bash-Konfiguration tendieren zu Detailverliebtheit. Handfester sind der „Benutzer-Manager für MX“, grafische Hilfen zur Bootreparatur („MX Bootreparatur“) und zur Anpassung des Grub-Bootmanagers („MX Boot Optionen“).

Ein weiteres Werkzeugpaar erscheint in der Sammlung der MX-Tools an oberster Stelle und nennt sich „MX Schnappschuss“ und „MX Live USB Erzeugung“. Es ist nicht auszuschließen, dass diese Tools einen Teil zur Popularität von MX Linux beitragen. Der Schnappschuss schreibt ein komplettes, angepasstes System in eine ISO-Datei, das dann mit dem zweiten Tool auf USB übertragen wird. Das Ergebnis ist ein perfekt ausgestattetes Livesystem auf USB. Ähnliches ist mit Linux auch auf anderen Wegen erreichbar, aber nirgendwo einfacher als hier.

Semi Rolling: MX Linux ist ein Semi-Rolling-Release – ein Kompromiss zwischen „Regulär“ und „Rolling“. Anders als bei regulären Distributionen wie Ubuntu & Co gibt es hier zwischendurch neue Software-Versionen, allerdings nur für Pakete, die größere Entwicklungssprünge gemacht hat – dies ist der Unterschied zu einem echten „Rolling Release“. Ziel ist es, einerseits höhere Aktualität zu bieten, andererseits Pannen durch Upgrades zu minimieren. Solange dies funktioniert, müssen Sie MX Linux niemals neu installieren.

MX-Installer
Das Installationsprogramm von MX Linux: Die Einrichtung als alleiniges System bereitet kein Kopfzerbrechen.

Die Einrichtungsvarianten

MX Linux charakterisiert sich als mittelschweres System (https://mxlinux.org/). Dies ist wohl seiner Nachbarschaft zu Antix Linux geschuldet (https://antixlinux.com/), mit dem es in enger Kooperation steht. Antix definiert sich eindeutig als Recycling-Spezialist für Hardware-Oldies. MX Linux ist aber bei allem Anpassungskomfort ein ebenfalls sehr genügsames und auch auf älterer Hardware agiles System. Bei kaum 450 MB Eigenbedarf für die 32-Bit-Variante sollte theoretisch schon ein GB RAM genügen. Ältere Notebooks mit 2 bis 4 GB sind ein ideales Ziel für die Distribution.

Ordentliche Installation: Die Einrichtung als alleiniges System ist nicht kompliziert: Im Bootmenü des Livesystems wählen Sie mit F2 die Sprache „Deutsch“ und mit F3 die Zeitzone „Berlin“. Dann starten Sie den obersten Eintrag „MX-19.2“. Eventuelle Fragen nach der Grafikkarte quittieren Sie ohne Auswahl mit Eingabetaste, starten zum Desktop des Livesystems und klicken auf den Installer-Link am Desktop. Als „Art der Installation“ wählen Sie „Automatische Installation“, womit MX Linux die gesamte Festplatte „sda“ übernehmen darf. Neben den Daten für den Erstbenutzer, die Sprache und die Zeitzone will der Installer ein root-Kennwort, einen Computernamen sowie die Samba-Arbeitsgruppe und einen Domain-Namen. Das Prozedere ist umständlicher als von Ubuntu & Co gewöhnt, aber letztlich pragmatischer, als diese Einstellungen später im laufenden System zu suchen. Zu diesem Installer-Konzept passt, dass man optional auch schon Standarddienste vorab ein- oder ausschalten kann.

Live-Betrieb auf USB: MX Linux ist nach dem Vorbild von Antix auch für den Live-Betrieb spezialisiert und läuft auch auf älterem USB 2.0 flüssig. Auf die Möglichkeit, mit zwei MX-Tools ein installiertes System im Handumdrehen auf USB zu befördern, haben wir bereits hingewiesen. Wenn dies der geplante Einsatz sein soll, ist es am besten, MX Linux als virtuelle Maschine unter Virtualbox oder Vmware zu installieren und anzupassen und daraus nach Bedarf ein neues Livesystem zu bauen. Das virtuelle System kann durch Updates aktualisiert werden.

Die Spezialisierung für den Live-Betrieb geht allerdings weiter: MX zeigt als Livesystem im Bootmenü den Punkt „Persist“, der mit F5 ausgeklappt werden kann. Von den vielen angezeigten Optionen empfehlen wir „persist_root“, da alle anderen Möglichkeiten entweder langsam sind oder einen lästigen Fragenkatalog mitbringen. Die Option speichert Änderungen am System im RAM, und beim Herunterfahren müssen Sie die Übernahme dieser Daten ins Livesystem explizit bestätigen. Damit ist ein flexibles MX Linux auch im Live-Betrieb möglich. Für große Änderungen empfehlen wir aber erneutes Remastern eines installierten Systems.

MX-Persistenz
Einsatz als Livesystem: Im Live-Betrieb bietet MX Linux diese Persistenzoptionen, um Systemänderungen zu speichern. Eine Kurzhilfe dazu finden Sie mit F1 unter „Hilfe“.

Knoppix: Der Live-Klassiker

Livesysteme sind nicht rar: Moderne Linux-Distributionen kombinieren das Installationsmedium mit einem Livesystem, das sich zum Ausprobieren, zum Hardware-Test und zur Reparatur eignet. Der Allrounder Knoppix behält dennoch seine Berechtigung.

„Initiating startup sequence“ meldet eine Frauenstimme beim Desktopstart. Extravagante Compiz-Effekte im Standard-Desktop LXDE mit „wackeligen“ Fenstern und wechselnde Knoppix-Screensaver garnieren den Desktop. Darunter wartet eine unfassbar umfangreiche Software-Sammlung auf ihren Einsatz – eine Sammlung mit nützlichsten Werkzeugen für Netzwerk, Surfen, Office, Medien, Reparaturen, die allerdings auch vor fragwürdiger B-Ware und funktional redundanten Dubletten nicht zurückschreckt.

Das nach Klaus Knopper benannte Knoppix ist eine ganz spezielle Distribution – und dabei in der technischen Basis vom Feinsten. Das Livesystem bootet praktisch auf jedem alten wie neuen Rechner, hat einen absolut zuverlässigen Assistenten zur Einrichtung und kann optional Daten und Einstellungen durch Verschlüsselung schützen. Das inzwischen fast 20 Jahre gereifte Debian-Linux ist der Live-Klassiker: Knoppix ermöglichte den Live-Betrieb lange vor den heute verbreiteten Live-Installationsmedien von Ubuntu & Co. Mit exzellenter Hardware-Erkennung, deutschsprachiger Arbeitsumgebung, opulenter Software-Ausstattung und variabler Einrichtung bleibt Knoppix die erste Wahl für ein universelles Zweitsystem auf USB.

Download und Einrichtungsvarianten

Knoppix-Downloads werden via http://www.knopper.net/knoppix-mirrors/ hauptsächlich über Universitäten angeboten. Der Download der aktuellsten Version 8.6 (Mitte 2019, inzwischen 9.1) beträgt circa 4,3 GB. Eine schlanke CD-Version (ca. 700 MB) gibt es zwar auch noch, wird aber seit 2013 nicht mehr gepflegt und stagniert seither bei Version 7.2. Es empfiehlt sich also der Griff zur großen DVD-Variante. Achten Sie in der Liste der ISO-Dateien auf „-DE“ im Dateinamen (KNOPPIX_V8.6-2019-08-08-DE.iso), um das System mit deutscher Benutzerführung herunterzuladen.

Knoppix live: Ungeachtet mancher irreführender Hinweise ist das originale Knoppix-ISO nicht auf den DVD-Start reduziert, sondern bietet eine moderne, hybride Startumgebung. Ein Zwischenschritt über einen DVD-Rohling ist daher nicht nötig, Knoppix bootet auch von einer Rohkopie auf USB-Stick. Als Werkzeug für diese Rohkopie taugen die üblichen Tools wie dd, Gnome-Disks („Laufwerksabbild wiederherstellen“), Etcher (https://etcher.io) oder der Win 32 Disk Imager unter Windows.

Nach dem Schreiben als Rohkopie ist Knoppix ein pures Livesystem, das keinerlei Änderungen speichert – egal ob auf DVD oder auf USB. Das Dateisystem wird in den Arbeitsspeicher geladen und somit gehen die in der Sitzung getätigten Änderungen beim Herunterfahren wieder verloren. Typischerweise erkennen Sie ein laufendes Live-System mit dem mount-Befehl im Terminal, der ein „loop0“-Device, ein „cloop“-Device (komprimiert), ein „squashfs“ (komprimiert) oder auch ein „aufs“-Dateisystem anzeigt (Another Union File System). Im Falle von Knoppix gibt es mehrere cloops- und unionfs-Geräte.

Das originale Knoppix live ist ausreichend, wenn Sie gelegentlich ein transportables Zweitsystem für Reparaturen, Surfen oder Spielen benötigen.

Knoppix live mit Overlay-Partition: Die ideale Knoppix-Einrichtungsvariante für den Dauerbetrieb ist der Einsatz einer zusätzlichen, beschreibbaren Overlay-Partition. Diese speichert und transportiert nicht nur persönliche Dokumente, sondern erlaubt auch dauerhafte Anpassungen, Installation, Deinstallationen. Diese Variante ist nach unserer Kenntnis nur aus einem bereits laufendem Knoppix zu erreichen, dies aber ganz einfach: Das maßgebliche Tool liegt standardmäßig als Link „Flash Knoppix“ auf dem Desktop. Im Menü ist es unter „Knoppix -> Knoppix auf Flash kopieren“ zu erreichen. Wie der Name sagt, ist „Flash Knoppix“ der Installationsassistent für Kopien auf beschreibbare USB- und SD-Medien, kann aber auch für die Einrichtung auf Festplatten genutzt werden.

1. Der erste Dialog fragt ab, ob nur Wechselmedien oder auch interne Festplatten als Ziel infrage kommen. Je nach Ihrer Antwort ermittelt das Tool anschließend die passenden Datenträger. Das Medium, auf dem Knoppix gerade läuft, wird erfreulicherweise nicht angeboten – ein logischer, aber nicht selbstverständlicher Service des Tools.

2. Nach Auswahl des gewünschten Zieldatenträgers wählen Sie die Option „Installation auf FAT32 mit zusätzlicher Overlay-Partition“. Um das Dateisystem FAT32 der Systempartition müssen Sie sich nicht kümmern, dafür sorgt das Tool automatisch. Die Overlay-Partition („Knoppix-Data“) erhält das Dateisystem ReiserFS.

3. Die nächste Abfrage „Möchten Sie Knoppix remastern?“ ist nur relevant, wenn Sie das Knoppix-System, mit dem Sie gerade installieren, bereits individuell angepasst haben. Mit anderen Worten: Wenn Sie gerade Ihr erstes Knoppix mit Overlay-Partition erstellen, beantworten Sie die Frage mit „Nein“. In einem späteren, angepassten Knoppix ist diese Option jedoch umso wichtiger: Mit der Antwort „Ja“ erreichen Sie, dass Ihre nächste Knoppix-Kopie wieder alle persönlichen Einstellungen mitbringt.

4. Die Abfrage zur Größe der Overlay-Partition können Sie auf einem USB-Stick normaler Größe einfach mit „OK“ übernehmen. Dann erhält die Overlay-Partition auf dem Stick die komplette Restkapazität, die das eigentliche Knoppix-System übriglässt. Bei Installation auf Festplatte schränken Sie die Größe mit dem Schieberegler auf Wunsch ein.

5. Die letzte Frage betrifft den optionalen Verschlüsselungsschutz der Overlay-Partition. Es handelt sich um die einzige Möglichkeit, ein Knoppix-System systemweit zu schützen. Knoppix als Livesystem hat nämlich keine Benutzerverwaltung. Der Live-User „knoppix“ kommt ohne Anmeldung an den Desktop und ist sudo-berechtigt. Wählt man bei der Einrichtung hingegen die Verschlüsselung, dann stoppt später der Bootvorgang relativ früh (vor dem Umschalten in den grafischen Textmodus) und fragt nach dem Kennwort („passphrase“). Dieses muss ohne Feedback eingegeben werden. Ein Start des Systems ohne Kennwort ist nicht möglich; ebenso erfolglos bleibt der Versuch, die Daten mit einem Fremdsystem auszulesen. Diese Verschlüsselung ist für USB-Sticks sehr zu empfehlen, umso mehr, wenn die Overlay-Partition nicht nur Systemeinstellungen, sondern auch persönliche Daten speichert.

Knoppix auf Festplatte: Trotz ausufernder Software und verspielter Effekte ist Knoppix mit seinem pragmatischen Standarddesktop LXDE äußerst bescheiden und fordert nur circa 300 MB RAM für System plus Oberfläche. Damit ist Knoppix mit LXDE, eventuell auch mit KDE, auch ein geeigneter Kandidat für eine Festplatteninstallation auf älteren Notebooks/PCs. Der dafür vorgesehene Assistent unter „Knoppix -> Knoppix HD-Installation“ ist im Vergleich mit dem Tool „Flash Knoppix“ allerdings konfus, fehlerträchtig, wahrscheinlich fehlerhaft. Wir raten definitiv davon ab und empfehlen auch für die Festplatteninstallation das Tool „Flash Knoppix“. Dabei erhalten Sie ein Livesystem mit üppiger Overlay-Partition, das im Alltag wie ein normal installiertes Linux arbeitet – nur ohne Benutzerkonten und Anmeldesicherung. Die Overlay-Partition erhält das Dateisystem ReiserFS, das keinerlei Beschränkungen für Dateigrößen besitzt. Die fehlende Benutzersicherheit können Sie bei der Einrichtung durch die Verschlüsselungsoption kompensieren.

Das wichtigste Knoppix-Tool: Nicht ohne Grund ist „Flash Knoppix“ Dauergast auf dem Desktop. Damit machen Sie aus einem Livesystem ein flexibles Linux.
Empfohlene Einrichtungsvariante mit Persistenz: Die Overlay-Partition ermöglicht dem Livesystem Desktop-Anpassungen, Installationen und Deinstallationen.

Entscheidungen bei der Einrichtung: „Remastern“ ist praktisch, wenn bereits ein angepasstes (Overlay-) Knoppix vorliegt, das identisch kopiert werden soll. Verschlüsselung kompensiert die fehlende Benutzersicherheit.

Knoppix individuell einrichten

Mit Overlay-Persistenz erlaubt Knoppix Anpassungen aller Art, auch Nachinstallationen und Entfernen überflüssiger Pakete. (De-) Installationen sind über Apt im Terminal zu realisieren, auf Wunsch auch über „Einstellungen -> Synaptic-Paketverwaltung“. Voraussetzung ist zunächst das übliche

sudo apt update

zum Einlesen der Paketquellen. Danach können Sie aufräumen

sudo apt remove cheese evolution gerbera scribus […]

oder auch Fehlendes nachrüsten.

Um das sehr umfangreiche Hauptmenü nicht für jeden Software-Favoriten bemühen zu müssen, empfiehlt sich nach Rechtsklick auf die „Anwendungsstartleiste“ die Einrichtung der wichtigsten Programme in der Hauptleiste. Alternativ sind auch Desktop-Links möglich, indem Sie im Hauptmenü nach Rechtsklick auf ein Tool die Option „Der Arbeitsfläche hinzufügen“ nutzen.

Wenn Sie den Knoppix-LXDE-Desktop versachlichen möchten, finden Sie mit „Einstellungen -> CompizConfig-Einstellungsverwaltung“ unter „Effekte“ die zuständigen Optionen. Zumindest die „wackeligen Fenster“ sind nicht jedermanns Geschmack. Weitere LXDE-Anpassungen zeigen die „Einstellungen“ unter „Desktop-Einstellungen“ und „Erscheinungsbild anpassen“.

Knoppix hat neben LXDE noch zwei weitere Desktops an Bord. Alternativ lassen sich auch die anspruchsvolleren Oberflächen Gnome 3 oder KDE Plasma 5 starten, dies aber, da es keine Systemanmeldung gibt, nur im laufenden System über den Menüpunkt „Knoppix-Desktop Auswahl/Neustart“. Gnome halten wir unter Knoppix für unproduktiv, weil die opulente Software-Ausstattung in der großen Gnome-Anwendungsübersicht sehr unübersichtlich wird. Außerdem ist der Gnome-Desktop für USB-Sticks (2.0) eine erhebliche Last. KDE Plasma ist mit seinem durchsuchbaren Hauptmenü die bessere und schlankere Alternative. Knoppix startet künftig so lange mit einem einmal gewählten Desktop, bis Sie über den genannten Menüpunkt wieder zu einer anderen Oberfläche wechseln.

Der schlanke LXDE-Desktop ist Knoppix-Standard. Von den angebotenen Alternativen Gnome und KDE ist nur KDE zu empfehlen.

Die interessantesten Knoppix-Tools

Das wichtigste Knoppix-Werkzeug ist „Flash Knoppix“, das wir bereits im obigen Punkt ausführlich beschrieben haben. Das Menü „Knoppix“ versammelt aber eine Reihe weiterer nützlicher Tools: Mit „Knoppix -> Netzlaufwerke suchen/mounten“ startet das System eine sehr zuverlässige Suche nach Samba-Freigaben. Zur Verbindung zu einem der dann angezeigten Server ist dann nur noch die Eingabe des Kontonamens und des Samba-Passworts nötig. Die danach automatisch eingehängte Freigabe erscheint im Dateimanager.

Umgekehrt kann Knoppix auch schnell mal selbst Daten freigeben. Während sich das veraltete Script Sambastart („Knoppix -> Samba Server“) in einer Endlosschleife verfängt, gelingt der Start des SSH-Servers über „Knoppix -> SSH Server starten“ problemlos. Zugriff erhält das Konto „knoppix“ mit dem zu vergebenden Kennwort. Linux-Rechner im lokalen Netz können sich dann mit dem Dateimanager und der Adresse „sftp://[IP-Adresse]“ bequem verbinden. Für Windows-Rechner ist der Datenzugriff über typische SSH-Clients wie Putty etwas umständlicher, weil man dann – etwa über den Midnight Commander – erst eine Shellverbindung zu einem dritten Rechner als Übergangsstation aufbauen muss.

Die Option „Knoppix -> TOR Proxy“ bereitet den Weg in das anonymisierende Tor-Netzwerk vor. Sobald das Tool die Erfolgsmeldung „TOR wurde gestartet“ bringt, können Sie über „Internet -> Tor Browser“ den Browser laden. Beim allerersten Mal muss dieser erst aus dem Web nachgeladen werden.

Eine interessante Sicherheitsfunktion bietet der Punkt „Knoppix -> Start Knoppix in KVM“. Sofern die Rechner-Hardware mitspielt, lädt Knoppix hier eine Original-Kopie seiner selbst (ohne Overlay-Anpassungen) als virtuelle Maschine mit dem Virtualisierer Qemu. Start wie Betrieb der VM verlaufen auch auf USB frappierend flott. Die VM kann etwa für den doppelt gesicherten Surfausflug mit dem Browser dienen (VM unter einem Livesystem!). Nebenbei haben Sie mit der VM immer ein originales Knoppix zur Hand, falls Sie das Overlay-System zu weitreichend abgespeckt haben.

Die Option „Knoppix -> Desktop zeigen/exportieren“ erlaubt die Remotefreigabe des Knoppix-Desktops. Dabei benutzt Knoppix das VNC-Protokoll, unterscheidet bei der Freigabe zwischen „Nur beobachten“ und „Steuerung erlauben“ und sichert die Freigabe durch ein optionales Kennwort, das Sie vor der Desktopfreigabe eingeben. Der zugreifende Rechner benötigt einen Client wie das verbreitete Remmina, das Knoppix natürlich auch an Bord hat („Internet -> Remmina“). Remmina benötigt für den Zugriff nur die IP-Adresse, das Kennwort und die Protokollangabe „VNC“. Das unter Knoppix installierte Remmina hat neben VNC und SSH auch das RDP-Plugin an Bord, das Windows für die Desktopfreigabe verwendet.

Komfortables Systemtool: „Netzlaufwerke suchen/mounten“ findet Samba/Windows-Freigaben im lokalen Netz.

Systemwerkzeuge und Zubehör

Unter den Kategorien „Systemwerkzeuge“ und „Zubehör“ versammelt Knoppix alle Gnome- und KDE-Kandidaten, die für Datenträger-, Datei-, Task- und Netzwerkverwaltung Rang und Namen haben. Knoppix will jeden Nutzer versorgen, egal von welcher Distribution und welchem Desktop er kommt. Das führt zu erheblicher Redundanz und erschwert den Durchblick gerade für weniger Erfahrene, denen Namen wie „Dolphin“, „Htop“ oder „Leafpad“ nicht auf Anhieb etwas sagen. Außerdem geht es im Hauptmenü munter hin und her zwischen beschreibenden Bezeichnungen und tatsächlichen Programmnamen. Wer hier mehr Klarheit haben will, kann auf seinem Overlay-Knoppix selbst aufräumen und aus dem jeweils halben Dutzend an Dateimanagern, Systemmonitoren, Terminals oder Texteditoren die irrelevanten herausfiltern. Ein „apt remove…“ ist die radikale Antwort, etwas sanfter ist nach

sudo pcmanfm /etc/share/applications

das Löschen oder Umbenennen von Desktop-Dateien. Geht es nur um das Entschlacken des Menüs, ist unter „Zubehör -> Hauptmenü“ der Menü-Editor Alacarte an Bord. Änderungen mit diesem Editor gelten erst nach einer Abmeldung vom Desktop.

Ungeachtet dieser eher kritischen Bemerkungen steht auf der positiven Seite außer Frage, dass jeder Linux-Nutzer unter Knoppix sein favorisiertes Systemtool vorfindet: Klassiker wie Gparted, Gnome-Disks („Laufwerke“), Hardinfo („System Profiler“) oder Gnome-System-Monitor („Systemüberwachung“) sind ebenso an Bord wie bewährte Editoren (Kate, Kwrite, Bluefish, Geany, Emacs, Leafpad), kleine Helfer wie Sweeper (Aufräumen), Baobab (Festplattenbelegung), Ark (Archivmanager) oder die Wine-Umgebung für Windows-Programme.

Office, Medien, Unterhaltung und Spiele

Das Livesystem versammelt auf komprimierten 4,3 GB eine Armada an Anwendungssoftware – auch hier mit bewusster funktionaler Redundanz, um jedem das Gewohnte anbieten zu können. Mit Alternativen wie Firefox und Chromium, Thunderbird und Evolution, VLC und MPV Player, Kdenlive und Openshot, Eog und Gpicview, Evince, Xournal, Okular (Dokumentenbetrachter) fallen die Doppelungen aber dosierter aus als bei den Systemwerkzeugen. Ansonsten steht mit Libre Office, Calibre (Ebook-Verwaltung), Gimp (Bildbearbeitung), Amarok, Audacity, Blender, Brasero, Freecad, Handbrake, Mediathekview, Inkscape, Keypassx, Ktorrent Pidgin, Remmina, Putty wirklich alles parat, was ein Linux-Nutzer für den Medien-Konsum und für den produktiven Alltag benötigt (wobei unsere kleine Liste nur die prominentesten Programme erwähnt).

Nicht zu vergessen: Annähernd 80 Spiele bringt Knoppix auch noch unter. Da ist – freundlich formuliert – auch Krimskrams dabei, aber auch viel Unterhaltsames. Spiele wie Kobi Deluxe, Kapman oder Kblocks sind nicht ganz der aktuelle Stand der Spieleentwicklung, haben aber das Suchtpotential für viele verlorene Stunden (dieser Artikel wurde trotzdem rechtzeitig fertig).

Auch das ist Knoppix: Das Livesystem bringt nicht nur Nutzwert pur, sondern auch eine ganze Menge Spielspaß mit.

Wer ist Bommel?

Bommel_20150416

Das abgebildete schwarze Tier hat gut 70 cm Risthöhe und 34 kg Gewicht. Es nennt sich Bommel und wird von den meisten Menschen als Hund wahrgenommen. In der Tat interessiert er sich für Individuen dieser Spezies, insbesondere für weibliche, jedoch mit tendenziell bisexueller Ausrichtung auch für kastrierte männliche. Trotz weiterer hündischer Merkmale des Prinzips „Immer der Nase nach“ bin ich mir nach drei Jahren mit diesem Tier so gut wie sicher, dass es sich um KEINEN Hund handelt:

Hunde rennen Stöckchen und Frisbees hinterher, Bommel nur Weibern.
Hunde denken nur ans Fressen, Bommel will eine Einladung zum Napf plus Bestätigung am Napf, dass die Einladung wirklich gilt.
Hunde wälzen sich in schlammigen Pfützen, Bommel macht einen Bogen.
Hunde danken dir für ein Leckerli, indem sie noch den halben Finger als Zugabe nehmen. Bommel holt es sich mit zartester Rücksicht.
Hunde hören auf „Stop“ und „Down“, Bommel schaut, ob das im Moment sinnvoll ist. Sieht er keinen Anlass („Hier ist kein Auto!“), schaut er mich tadelnd an – und lässt es.

Bommel ist wahrscheinlich kein Hund, sondern ein Pudel. Nach Goethe und Schopenhauer ist ein Pudel ein Wesen mit durchaus ungewissem Kern. Ich werde die nächsten Jahre nutzen, Genaueres herauszufinden.

Sonne mag ich nicht...

Some people like cats exclusively. I for one care less for them.
I say there is not, nor ought there be nothing so exalted on the face of God’s great earth as that prince of pets: Bommel – the king size poodle…

(Frank Zappa in memoriam et variationem…)

Pudelfreunde verschiedener Größe…

Linux und die Datenträger

Um Festplatten, SSDs und USB-Datenträger zu bearbeiten und zu kontrollieren, bringt der Linux-Desktop alles mit. Der Installer sorgt für die Einrichtung der Systempartition, Gnome-Disks & Co arbeiten als Allrounder im Alltag, und Gparted ist der Partitionierer für alle Fälle.

Hardware-seitig arbeiten Festplatten, SSDs und USB-Laufwerke unter Linux wie unter allen anderen Betriebssystemen. Einmal partitioniert, formatiert und eingebunden benötigen Datenträger nur noch gelegentliche Kontrollen der aktuellen Belegung und SMART-Checks auf eventuelle Fehler. Optimales Partitionieren, Formatieren und Mounten erforderten aber schon immer einiges Basiswissen, und diese Anforderungen an den PC-Nutzer sind in der aktuellen Übergangsphase mit fundamental unterschiedlichen Partitionsmethoden noch einmal gewachsen. Dieser Grundlagenbeitrag komprimiert die wesentlichen theoretischen und praktischen Probleme

Partitionieren und Partitionsstil

Grundlegendste Aktion bei der Festplattenverwaltung ist das Anlegen der Partitionstabelle mit dem Partitionsstil, ferner der optionalen Einteilung in mehrere Teile (Partitionen) sowie der optionalen Festlegung der Partitionsgrößen. Viele PC-Nutzer bekommen von der Partitionierung (zumindest auf der primären Systemfestplatte) gar nichts mit, weil diese das Installationsprogramm automatisch erledigt. Liegt dabei nur eine interne Festplatte vor, die nicht weiter unterteilt werden soll, entfallen alle Entscheidungen zum Partitionsstil und zur Aufteilung. Die Installer aller Ubuntu-basierten Systeme entscheiden dann selbständig anhand der Datenträgerkapazität über den Partitionsstil: Auf großen Laufwerken über 2 TB Kapazität kommt modernes GPT (GUID Partition Table) zum Einsatz, auf kleineren Laufwerken der alte MBR-Stil.

Der alte MBR-Partitionsstil (Master Boot Record, auch „msdos“-Partitionstabelle) kann Partitionen bis zu maximal 2,2 TB Größe verwalten. Für die mittlerweile gebräuchlichen Größen von 4 bis 12 TB ist der GPT-Partitionsstil erforderlich, sofern solche Festplatten als Ganzes genutzt und nicht in mehrere Partitionen aufgeteilt werden. Bei Festplatten mit mehr als 2 TB sollten Sie besser immer GPT verwenden. Bei kleineren Laufwerken ist GPT zur Nutzung der kompletten Kapazität nicht erforderlich, aber eventuell trotzdem sinnvoll, wenn der PC mit Uefi-Firmware (Unified Extensible Firmware Interface) ausgestattet ist und Sie vielleicht auch Windows parallel installieren wollen.

Werkzeuge: Die grafischen Systemtools Gnome-Disks („Laufwerke“) oder die KDE-Partitionsverwaltung können den Partitionsstil einer Festplatte kontrollieren und ändern. Die Umstellung des bestehenden Partitionsstils geht allerdings immer mit komplettem Datenverlust einher. Wir beschreiben den Vorgang nicht mit den Desktop-spezifischen Werkzeugen, sondern mit dem bekannten Partitionierungswerkzeug Gparted. Gparted ist zwar nicht überall Standard, aber bei Bedarf schnell nachinstalliert (sudo apt install gparted in Debian/Ubuntu/Mint). In Gparted sehen Sie über „Ansicht -> Geräteinformationen“ in der Zeile „Partitionsstil“ den aktuellen Partitionsstil der gewählten Festplatte – meistens „msdos“ (MBR) oder „gpt“ (GPT). Über das Menü „Gerät -> Partitionstabelle erstellen“ können Sie den bisherigen Stil ändern. Nach einem Klick auf „Anwenden“ erzeugt Gparted eine neue Partitionstabelle. Über „Partition -> Neu“ erstellen Sie danach eine neue Partition.

Hinweis 1: Partitionen lassen sich, egal ob mit Gparted oder einem anderen Werkzeug, nur bearbeiten, wenn sie vorher aus dem Dateisystem ausgehängt wurden. Gparted erledigt dies nach Rechtsklick auf die Partition mit „Aushängen“. Falls das Aushängen scheitert, schließen Sie alle Programme inklusive Dateimanager, die den Vorgang durch ihren Zugriff verhindern könnten. Auch Netzwerkdienste wie Samba können die Bearbeitung blockieren. Wer Unmount-Blockaden ausschließen will, bootet am besten ein unabhängiges Livesystem mit Gparted.

Hinweis 2: Gparted sammelt Aufträge wie das Löschen, Erstellen oder Formatieren von Partitionen zunächst, ohen sie auszuführen. Erst „Bearbeiten -> Alle Vorgänge ausführen“ startet die eigentliche Aktion.

Unter Windows zeigt die „Datenträgerverwaltung“ (diskmgmt.msc) nach Rechtsklick auf „Datenträger [x]“ und „Eigenschaften“ auf der Registerkarte „Volumes“ den Partitionsstil an („MBR“ oder „GPT“).

Wenn keine grafische Oberfläche zur Verfügung steht, gibt es auch Terminaltools für die Festplattenverwaltung. Der Befehl

sudo fdisk -l

zeigt für die Laufwerke auch den aktuellen Partitionsstil an – hier neben „Festplattenbezeichnungstyp“ als „dos“ oder „gpt“. Für das Schreiben einer anderen Partitionstabelle, also zum Ändern des bisherigen Partitionsstils, verwenden Sie

sudo sgdisk -g /dev/sd[X]

nach GPT oder

sudo sgdisk -m /dev/sd[X]

zum Schreiben einer MBR-Partitionstabelle. Ersetzen Sie dabei „[X]“ jeweils durch die richtige Kennung des Laufwerks. Bei reinen Datenpartitionen (nur Benutzerdaten) kann mit diesen Befehlen sogar eine Umwandlung des Partitionsstils ohne Datenverlust gelingen. Wir raten aber davon ab, sich darauf ohne Sicherung zu verlassen.

Auch große Festplatten lassen sich im MBR-Stil durch Partitionierung komplett nutzen. Jedoch scheitert der Versuch, große Festplatten (hier mehr als 5 TB) als eine Partition anzulegen.
Ändern des Partitionsstils nach GPT: Dies schreibt die Partitionstabelle neu und bedeutet in der Regel einen kompletten Datenverlust auf dieser Festplatte

Partitionen löschen und anlegen

Das Löschen von Partitionen und Einrichten neuer Partitionen erledigen die typischen Gnome- und KDE-Tools ebenso wie Gparted. Gparted zeigt nach Rechtsklick auf die symbolische Partitionsfläche die Option „Löschen“. Dies impliziert in der Regel (und mit Gewissheit nach anschließenden Größenänderungen und Formatierung) den kompletten Datenverlust auf dieser Partition. Die Option „Neu“ zum Erstellen einer neuen Partition ist im Kontextmenü nur aktiv, wenn ein freier, nicht genutzter Bereich angeklickt wurde. Es muss also erst eine Partition gelöscht werden, um deren Platz („nicht zugeteilt“) dann neu zu nutzen. Mit dem anschließend angezeigten Schieberegler bestimmen Sie dann, ob die neue Partition den kompletten Platz erhalten soll oder eine Aufteilung in mehrere Partitionen erfolgen soll. Wenn Sie nur einen Teil der Kapazität verwenden, verbleibt danach „nicht zugeteilter“ Platz, den Sie danach mit „Neu“ auf analoge Weise partitionieren.

Partitionsstil (MBR/GPT) und Multiboot

Der Partitionsstil (GPT) ist nicht nur wichtig für große Datenträger jenseits der 2,2-TB-Grenze, sondern spielt auch eine entscheidende Rolle, wenn mehrere Systeme parallel installiert werden sollen – oft Linux neben Windows. Das Thema ist komplex, weil hier auch das Rechner-Bios mitspielt – Uefi (Unified Extensible Firmware Interface) oder Bios (Basic Input Output System). Theoretisch gibt es jede Kombination: Typisch ist Bios/MBR sowie Uefi/GPT, jedoch ist auch Bios/GPT und Uefi/MBR möglich. Das heisst, dass auch ein altes Bios Systeme von GPT-Partitionen oder ein modernes Uefi vom alten MBR booten kann. Ein Multiboot mit Windows funktioniert aber nur auf Bios/MBR oder Uefi/GPT.

Der theoretisch anspruchsvolle Knoten ist aber in der Praxis leicht zu lösen: Sie orientieren sich bei einer Parallelinstallationen einfach daran, was schon vorliegt und installieren dann im selben Modus. Ob das schon vorhandene System den Bios- oder Uefi-Modus verwendet, erfahren Sie unter Linux im Terminal durch Aufruf dieses Tools:

efibootmgr

Ist das Tool nicht vorhanden oder lautet dessen Ausgabe „EFI variables are not supported on this system“, dann läuft das System im Bios-Modus. Unter Windows informiert das Systemtool Msinfo32. Hinter „BIOS-Modus“ steht bei Systemen im Bios-Modus „Vorgängerversion“, andernfalls „UEFI“. Letzteres ist bei allen neueren PCs mit vorinstalliertem OEM-Windows die Regel.

A. Liegt ein altes Bios und ein im MBR-Stil installiertes Erstsystem vor, ist die Lage eindeutig und es kann jedes 32- oder 64-Bit-System (Linux oder Windows) parallel installiert werden.

B. Liegt altes Bios, aber GPT-Partitionierung vor, kann nur ein 64-Bit-Linux installiert werden.

C. Liegt neues Uefi mit altem MBR-Stil vor (das geht vorläufig noch via Compatibility Support Module), kann jedes 32- oder 64-Bit-System (Linux oder Windows) parallel installiert werden. Dabei muss man den Rechner über das Bootmenü des Uefi-Bios starten (frühzeitiges Drücken der Taste F8, F12 oder Esc). Dort erscheinen dann die Laufwerke zwei Mal – einmal mit, einmal ohne den Vorsatz „UEFI“. Für MBR-Parallelinstallation wählen Sie Eintrag des betreffenden Installationslaufwerks ohne „UEFI“.

D. Liegt Uefi mit GPT-Stil vor, kann ein 64-Bit-System (Linux oder Windows) parallel installiert werden. Dabei muss man den Rechner über das Bootmenü des Uefi-Bios starten (frühzeitiges Drücken der Taste F8, F12 oder Esc). Für GPT-Parallelinstallation wählen Sie Eintrag des betreffenden Installationslaufwerks mit der Angabe „UEFI“.

Tipp: Trotz dieser relativ einfachen Fallunterscheidung kann man etwas falsch machen, was sich dann aber während der Installation des zweiten Systems schnell zeigt: Wenn kein Erstsystem erkannt wird und das neue System die gesamte Festplatte in Anspruch nehmen will, müssen Sie die Installation abbrechen.

System im Bios- oder Uefi-Modus? Unter Linux beantwortet der Befehl efibootmgr diese Frage. Unter Windows hilft das Standardprogramm Msinfo32.
Friedliche Koexistenz: Ubuntu & Co installieren sich im Uefi-Modus neben dem Windows Boot-Manager und integrieren den Windows-Bootloader in das Grub-Menü.

Partitionsgrößen nachträglich ändern

Die Einteilung (oder Nicht-Einteilung) eines Datenträgers kann sich nachträglich als ungünstig herausstellen. In diesem Fall besteht die Möglichkeit, eine bestehende Partition ohne Datenverlust zu verkleinern und auf dem frei werdenden Speicherplatz eine neue Partition anzulegen. Wirklich notwendig ist dieses Vorgehen aber nur in dem Fall, dass Sie ein weiteres Betriebssystem installieren wollen.

Werkzeuge: Erfreulicherweise sind die Installationsprogramme aller Ubuntu-Desktopsysteme auf die Situation vorbereitet, dass die Partition eines bestehenden Betriebssystems verkleinert werden muss. Mit der Option „Ubuntu neben [XXX] installieren“ schlägt der Installer eine neue Aufteilung der Partitionen vor, indem er die Partition des bestehenden Systems verkleinert und Platz für das neue System schafft. Die gewünschten Partitionsgrößen lassen sich einfach mit der Maus über die Aufteilungsmarkierung einstellen.

Im Falle einer gewünschten Größenänderung ohne Installation oder ohne einen Installer, der solche Größenänderungen beherrscht, hilft wieder Gparted. Beachten Sie, dass Gparted nur ausgehängte Partitionen bearbeiten kann und folglich die Systempartition eines laufenden Systems tabu bleibt. Zugriff auf alle Festplatten hat Gparted nur, wenn es auf einem unabhängigen Livesystem läuft. In Gparted wählen Sie zunächst rechts oben Sie den gewünschten Datenträger. Klicken Sie dann die Partition an, die Sie bearbeiten wollen, und wählen Sie im Kontextmenü „Größe ändern/Verschieben“. Wählen Sie mit dem Regler die gewünschte Partitionsgröße oder tragen Sie die Größe hinter „Neue Größe (MiB):“ manuell ein. Danach klicken Sie auf „Größe ändern“. Gparted erledigt diesen wie alle Aufträge erst nach „Bearbeiten -> Alle Vorgänge ausführen“.

Unter Windows gibt es die Datenträgerverwaltung (diskmgmt.msc), die nach Rechtsklick auf einer Partition die Option „Volume verkleinern“ anbietet. Die Größe der neuen Partition definieren Sie dann mit dem Wert neben „Zu verkleinernder Speicherplatz“. Dies ist eine weitere Möglichkeit, um eine Parallelinstallation eines Linux vorzubereiten, das kein ausreichendes Partitionierwerkzeug mitbringt.

Gparted verkleinert Partitionen ohne Datenverlust: Das können inzwischen auch andere Partitionsmanager, aber keiner so zuverlässig wie der Altmeister.

Formatieren: Die Dateisysteme

Partitionieren und Formatieren erscheinen in grafischen Tools in einem Dialog wie eine Tateinheit. Tatsächlich bedeutet Partitionieren das Aufteilen von Festplattenbereichen, während Formatieren bereits weitaus Betriebssystem-näher das Dateisystem für die jeweilige Partition bestimmt. Dateisysteme wie FAT32 beschränken sich auf eine relativ simple Verweisbibliothek zum Auffinden der Daten, Dateisysteme wie Ext4 oder NTFS erweitern diese Basisfunktion um Rechteattribute und Wiederherstellungsprotokolle (Journaling), Dateisysteme wie BTRFS erlauben sogar Snapshots des Partitionszustands und die Rückkehr zu einem früheren Zustand.

Trotz zahlreicher weiterer Dateisysteme wie F2FS, JFS, ZFS, ReiserFS, XFS ist die Wahl auf einem Desktopsystem nicht schwer: Für die Systempartition, aber auch für alle sonstigen Datenträger, die nur am Linux-System genutzt werden, ist Ext4 die solideste Wahl. Das gilt auch für Laufwerke, die Netzfreigaben leisten sollen.

Dateisysteme sind allerdings nicht beliebig kompatibel. So kann (oder will) Windows mit Ext4-formatieren Datenträgern nichts anfangen. Wenn Datenträger wie also interne Festplatten (bei Multiboot) oder mobile USB-Datenträger für den Datenaustausch zwischen Linux und Windows genutzt werden, sind andere Dateisysteme zu erwägen:

* Für kleinere interne oder externe Laufwerke (USB-Sticks), die für unkomplizierten Datenaustausch dienen sollen, eignet sich im einfachsten Fall eine Formatierung mit dem FAT32, das alle Betriebssystem ohne Hilfsmittel beherrschen und auch selbst formatieren können. Auf FAT32 ist allerdings die maximale Dateigröße auf vier GB limitiert. Wenn diese Grenze stört, kommt eventuell das Microsoft-Dateisystem exFAT in Betracht. Linux beherrscht exFAT demnächst standardmäßig, vorläufig ist noch die Nachinstallation des kleinen exFAT-Treibers ist mit

sudo apt install exfat-fuse exfat-utils

erforderlich. Danach können Sie exFAT-Datenträger sofort mit Linux-Dateimanagern nutzen und mit Werkzeugen wie Gnome-Disks („Laufwerke“) auch mit exFAT formatieren („Partition formatieren -> Andere -> exFAT“). Gparted hat exFAT zwar in seiner Dateisystemliste, will aber bislang nicht mit exFAT formatieren (inaktiv).

* Sind nur Linux- und Windows-Rechner im Spiel, ist das Microsoft-Dateisystem NTFS erste Wahl. Linux wie Windows haben dort Lese- und Schreibzugriff, Linux wie Windows können mit NTFS formatieren. Mac OS X kann NTFS standardmäßig nur lesen.

Werkzeuge: Gparted erledigt die Formatierung einer Partition nach Rechtsklick und „Formatieren als“, wonach die Liste der unterstützten Dateisysteme angeboten wird. Standardprogramme wie Gnome-Disks beherrschen diese Pflichtaufgabe natürlich ebenso („Partition / Laufwerk formatieren“), bieten dabei zwar weniger Dateisysteme, leisten aber Anfängerunterstützung, indem sie die Kompatibilität der Dateisysteme skizzieren – etwa „Zur Nutzung mit Windows (NTFS)“.

Wenn Sie die Kommandozeile benutzen müssen, verwenden Sie den Befehl mkfs („make filesystem“):

sudo mkfs.ext4 -L [Bezeichnung] /dev/sd[XY]

Nach „mkfs.“ folgt die Angabe des Dateisystems „ext4“, hinter „-L“ („Label“) geben Sie optional eine Bezeichnung an, anhand derer sich die Partition später im Dateimanager leichter identifizieren lässt. Den Platzhalter „[XY]“ ersetzen Sie durch die Laufwerksbezeichnung und Partitionsnummer, etwa „/dev/sdb1“ oder „/dev/sdc2“. Für andere Dateisysteme gibt es entsprechende Tools, beispielsweise mkfs.ntfs oder mkfs.vfat (FAT32).

Formatieren mit Gnome-Disks: Das Tool „Laufwerke“ beschränkt sich auf die populärsten Dateisysteme, hilft aber bei der Auswahl. Gparted ist mächtiger, setzt aber Kompetenz voraus.
Formatieren im Terminal: Für jedes Dateisystem gibt es ein eigenes mkfs-Tool. Rufen Sie das Tool ohne Parameter auf, um eine Übersicht der Optionen zu erhalten.

Mounten: Statisch und dynamisch

Mounten ist Pflicht: Jede Partition muss an definierter Stelle (Mountpunkt) in das Dateisystem eingebunden werden. Die einzige Partition, die in jedem Fall statisch beim Systemstart eingebunden wird, ist die Systempartition. Dies wird schon bei Installation festgelegt, wenn Sie den Installationsort bestimmen und als Mountpunkt („Einbindungspunkt“) das Wurzelverzeichnis „/“ angeben. Resultat dieser Aktion ist ein Eintrag in der Datei /etc/fstab, die für alle statischen Mountaufträge zuständig ist (Beispiel):

UUID=[xxxxxxx] / ext4 errors=remount-ro 0 1

Manuelles Bearbeiten der /etc/fstab für weitere statische Mount-Aktionen kann sinnvoll oder notwendig sein: Auf Servern, die Laufwerke automatisch bereitstellen sollen, ist es unbedingt notwendig, diese Laufwerke in die fstab einzutragen. Auf Desktop-Rechnern übernimmt der Dateimanager durch dynamisches Mounten (siehe unten) viele Mount-Aufgaben. Dennoch kann es komfortabel sein, interne Laufwerke mit Benutzerdaten via /etc/fstab in einen klicknahen Ordner zu mounten. Unbedingt notwendig ist ein fstab-Eintrag auf Desktop-PCs, wenn Sie ein zusätzliches Laufwerk exakt an einer bestimmten Stelle des Dateisystems einhängen wollen.

Die für die /etc/fstab notwendigen Informationen sind die eindeutige UUID des Laufwerks (eine hexadezimale Ziffern- und Buchstabenfolge), der Mountpunkt und dessen Dateisystem (ext4, ntfs…). Alle diese Angaben liefert der Befehl

lsblk -f

Ein Eintrag für die fstab sieht dann im Prinzip so aus

UUID=[…] [Mountordner] [Dateisystem] [Optionen] 0 0

und im konkreten Beispiel etwa so:

UUID=BE43818F4A8138A3 /srv/data ext4 defaults 0 0

Die Partition/Festplatte mit dieser UUID wird dann automatisch im Ordner „/srv/data“ bereitgestellt. Der angegebene Mountordner muss existieren und sollte leer sein.

Die Komma-getrennten „Optionen“ enthalten im einfachsten Fall nur den Wert „defaults“, können aber auch komplex ausfallen (Fehlertoleranz, Dateirechte). Die Mount-Optionen sind schon deshalb eine Wissenschaft für sich, weil manche Dateisysteme ganz spezielle Eigenschaften besitzen, die mit den Optionen abgerufen werden können. Mit „defaults“, das eine Zusammenfassung von mehreren typischen Optionen ist, kommen Sie aber in den meisten Fällen ans Ziel.

Bevor Sie einen Rechner mit geänderter Datei /etc/fstab neu starten, lohnt sich immer ein manueller Test:

sudo mount -a

Dies lädt alle Geräte, die in der Datei /etc/fstab eingetragen sind.

Dynamisches Mounten: Auf dem Linux-Desktop erledigt der grafische Dateimanager den Großteil des Mount-Geschäfts. Wenn Sie ein USB-Laufwerk anschließen oder ein neues Laufwerk gerade neu formatiert haben, taucht dieses sofort in der Navigationsspalte des Dateimanagers auf. Nach einem Mausklick darauf erledigt der Dateimanager das Mounten in das Dateisystem, und zwar unter „/media/[Benutzername]/[Volume-Label]“. Bei Ubuntu verhält sich der Dateimanager abhängig von Benutzerrechten, Dateisystem und Laufwerkstyp unterschiedlich:

* Benutzer mit administrativen Rechten (Systemverwalter) dürfen interne und externe Laufwerke über den Dateimanager ein- und aushängen.

* Auch Systemverwalter erhalten bei Linux-Dateisystemen wie Ext4, BTRFS und XFS nur Lesezugriff, Schreibzugriff gibt es auf FAT32- und NTFS-Partitionen..

* Standardbenutzer dürfen über den Dateimanager nur externe Geräte (USB-Sticks und Festplatten) ein- und aushängen. Auf FAT32- und NTFS-Partitionen gibt es Lese- und Schreibzugriff.

* Standardbenutzer werden bei einem Klick auf interne, nicht eingebundene Laufwerke zur Eingabe des Systemverwalter-Passworts aufgefordert. Bei FAT32 und NTFS räumt Ubuntu Lese- und Schreibzugriff ein, auf Linux-Dateisystemen gibt es nur Leserechte.

Zusammengefasst gibt es beim dynamischen Mounten von USB-Laufwerken mit FAT32 und NTFS die wenigsten Rechteprobleme. Wenn USB-Laufwerke ein Linux-Dateisystem besitzen, müssen Sie die Rechte wie bei internen Laufwerken setzen, um Schreibrecht zu erreichen.

Mountpunkt ab Installation: Das Wurzelverzeichnis („/“) für die Systempartition wird schon bei der Installation festgelegt.
Statisches Mounten mit /etc/fstab: Alle Partitionen, die hier eingetragen sind, lädt Linux beim Systemstart automatisch in den angegebenen Mountpunkt.

Zugriffsrechte im Dateisystem setzen

Bei neu in das Dateisystem eingebundenen Ext4-Partitionen (ebenso XFS oder BTRFS) hat nur „root“ Schreibzugriff, andere Benutzer erhalten nur Lesezugriff. Wenn Sie der einzige Benutzer des Systems sind, können Sie es sich einfach machen. Mit

sudo chmod -cR 777 /mnt/Data

setzen Sie im betreffenden Mountpunkt (hier „/mnt/Data“) maximale Zugriffsrechte.

Bei Mehrbenutzersystemen ist die Rechtevergabe komplizierter. Hier steuern Sie den Zugriff über die Gruppenzugehörigkeit und Access Control Lists (ACL) mit dem Tool setfacl. Führen Sie im Terminalfenster folgende Befehle aus:

sudo chgrp plugdev /mnt/Data

sudo chmod g+rwx /mnt/Data

sudo chmod g+s /mnt/Data

sudo setfacl -R -dm u::rwx,g:plugdev:rwx,o::rx /mnt/Data

Diese Befehlszeilen erstellen ein Verzeichnis „/mnt/Data“ für den Datenaustausch. Es gehört der Gruppe „plugdev“, die Vollzugriff erhält. „chmod g+s“ bewirkt, dass das Gruppenattribut erhalten bleibt, wenn ein Benutzer neue Dateien oder Ordner anlegt. Mit setfacl setzen Sie die Standard-Zugriffsrechte, die auf alle enthaltenen und zukünftigen Elemente vererbt werden. Im Ergebnis erhalten alle Mitglieder der Gruppe „plugdev“ Lese- und Schreibzugriff. Zur Gruppe „plugdev“ gehören unter Ubuntu/Mint standardmäßig alle Benutzer.

Kapazitäten einfach erweitern

Das Verzeichnis /home mit den Benutzerdateien erfordert in aller Regel den meisten Plattenplatz. Sollte der Platz knapp werden, können Sie die Daten auf eine zweite Festplatte mit mehr Kapazität verlagern. Wichtig ist, dass gerade keine Dateien geöffnet sind, welche die Aktion blockieren.

Das Beispiel geht davon aus, dass eine zusätzliche Festplatte unter „/mnt/data“ eingebunden ist. Schließen Sie alle Programme und wechseln Sie mit Strg-Alt-F1 in die erste virtuelle Konsole. Dort kopieren Sie alle Verzeichnisse unter /home auf das zusätzliche Laufwerk und benennen das bisherige Home-Verzeichnis um:

sudo rsync -av /home/ /mnt/data/home

mv /home /home.bak

Beachten Sie beim rsync-Befehl den abschließenden Slash hinter „/home/“. Mit folgenden Befehlen erstellen Sie einen neuen Ordner „/home“ und hängen das Verzeichnis des neuen Laufwerks an dieser Stelle ein:

sudo mkdir /home

sudo mount -o bind /mnt/data/home /home

Funktioniert alles problemlos, dann sorgen Sie dafür, dass Linux den Ordner beim Systemstart automatisch vom primären Mount-Ordner nach /home abbildet. Dazu genügt eine zusätzliche Zeile der Datei /etc/fstab:

/mnt/data/home /home none bind 0 0

Mit Strg-Alt-F7 kehren Sie nun zur grafischen Oberfläche zurück und melden sich an. Ihr Home-Verzeichnis finden Sie so vor, wie Sie es verlassen haben – aber mit mehr Platz.

Tipp: Als alleiniger Systembenutzer lassen sich Plattenplatznöte unter /home/[user] noch einfacher beheben. Im Beispiel nehmen wir an, dass der Ordner ~/Videos zu viel Platz benötigt. Auch hier schließen Sie alle Programme und mounten im Terminal nach

mv ~/Videos ~/Videos.old

mkdir ~/Videos

den neuen Datenträger:

sudo mount /dev/sd[xy] ~/Videos

Danach verschieben Sie alle Inhalte aus „Videos.old“ nach „Videos“, was auch im Dateimanager geschehen kann. Eventuelle Rechteprobleme beheben Sie so:

sudo chmod -cR 777 ~/Videos

Hat dies alles geklappt, tragen Sie den Datenträger mit seiner UUID und Mountpunkt „/home/[user]/Videos“ in die Datei /etc/fstab ein.

Mount-Trick in der Datei /etc/fstab: Das unter /mnt/data eingehängte Laufwerk wird über eine zweite Zeile mit der Option „bind“ einfach ins Home-Verzeichnis verschoben.

Kontrolle des Datenträgerzustands (SMART)

Festplatten und SSDs protokollieren Statusinformationen (SMART-Werte), die Hinweise auf Fehler und Defekte geben. Die Werkzeuge Gnome-Disks und KDE-Partitionmanager zeigen die SMART-Werte interner Festplatten an. Das KDE-Tool äußert sich unter „Gerät -> Status“ relativ knapp, jedoch sollte eine positive „Gesamtbewertung: Healthy“ für einen Gesamteindruck ausreichen. Das Gnome-Tool ist unter „SMART-Werte und Selbsttests“ recht gesprächig, sollte aber vor allem hinter „Allgemeine Einschätzung“ die Aussage zeigen: „Das Laufwerk ist in Ordnung“. Bei SSDs steht hinter „wear-leveling-count“ in der Spalte „Normalisiert“ ein wichtiger Wert: Neue SSDs starten bei „100“ und der Wert reduziert sich mit der Zeit. Nähert er sich der „0“, müssen Sie das Laufwerk ersetzen.

Per USB angeschlossene Festplatten berücksichtigt das KDE-Tool ebenfalls, Gnome-Disks allerdings nicht. Hier benötigen Sie das zusätzliche Paket „smartmontools“ und folgenden Terminalbefehl:

sudo smartctl -H /dev/sd[x]

Wenn der Health-Test mit „PASSED“ beantwortet wird, ist die Tauglichkeit des Laufwerks schon erwiesen. Weitere Details gibt es nach

sudo smartctl -A /dev/sd[x]

und noch ausführlicher mit dem Parameter „-a“. Ein wichtiger Wert ist “ Reallocated_Sectors_Ct“, der die Zahl defekter Sektoren anzeigt und im Optimalfall eine „0“ bieten sollte. Gleiches gilt für „Spin_Retry_Count“, weil die hier gezählten, gescheiterten Anlaufversuche auf mechanische Mängel deuten. Seek- und Read-Errors sind hingegen kaum relevant.

Gnome-Disks und die KDE-Partitionsverwaltung lesen die SMART-Werte von Datenträgern aus. Die angezeigte SSD ist neuwertig und darf weitermachen:

Kontrolle der Festplattenbelegung

Auf Gnome-Desktops finden Sie das Tool Baobab („Festplattenbelegung“) im Hauptmenü. Es zeigt die Gesamtkapazität und den Füllstand von Datenträgern. Nach Klick auf dem Pfeil ganz rechts startet Baobab eine Ordneranalyse, die es nach kurzer Wartezeit als Kreis- oder Kacheldiagramm visualisiert. Das sieht hübsch aus, doch der Erkenntniswert hält sich in Grenzen. Viele Nutzer werden sich von

df -h | grep /dev/sd

im Terminal schneller und besser informiert fühlen. Vor allem die Prozentzahl („Verw%“) bietet gute Orientierung. Wer eine Größenanalyse der Verzeichnisse benötigt, ist mit einem weiteren Terminalwerkzeug

du -h

übersichtlich beraten. Wer es genauer wissen muss, kann auch das Tool Ncdu nachinstallieren. Das Terminalprogramm sortiert die Verzeichnisse nach der enthaltenen Datenmenge und kann auch aktiv löschen. Um das komplette Dateisystem zu durchforsten, muss man Ncdu auf der obersten Ebene starten („ncdu /“).

Verzeichnisgrößen mit Ncdu ermitteln: Auf SSH-verwalteten Servern ist Ncdu unverzichtbar und selbst auf dem Desktop eine Empfehlung.

Festplatten zusammenlegen

Der Logical Volume Manager (LVM) erlaubt das Anlegen einer „Volume Group“, in welche mehrere physische Laufwerke und Partitionen zu einem logischen Laufwerk zusammengefasst werden. Der angelegte Verbund ist dynamisch erweiterbar, enthaltene Datenträger können also wieder entnommen oder durch andere ersetzt werden. Das ist sehr flexibel, erhöht aber die Komplexität, zumal der Ausfall eines Datenträgers den ganzen Verbund gefährdet. LVM hat seinen Platz eindeutig auf Serversystemen mit flexiblen Kapazitätsansprüchen und ist nur erfahrenen Admins zu empfehlen.

In Ubuntu & Co kann LVM bereits bei der Installation gewählt werden. Damit wird die Systempartition zum ersten Volume der LVM-Gruppe. Notwendig ist dies nicht, da sich LVM auch nachträglich einrichten lässt – unabhängig von der Systempartition und ausschließlich für Datensammlungen. Mit dem standardmäßig installierten Terminaltool lvm ist die Einrichtung von LVM-Pools allerdings eine mühsame Angelegenheit. Ein grafisches Tool gibt es aktuell nur für KDE – den „KDE-Manager für Laufwerkspartitionen“ (KVPM), der durch das gleichnamige Paket installiert werden kann:

sudo apt install kvpm

Die Installation von kvpm ist auch unter Gnome-affinen Oberflächen (Gnome, Cinnamon, XFCE) möglich.

Mit KVPM ist der Ablauf dann recht bequem. Nachdem alle Laufwerke für den künftigen Datenpool angeschlossen, starten Sie den Manager mit root-Recht:

sudo kvpm

Klicken Sie in der Übersicht nacheinander mit rechter Maustaste auf alle Laufwerke und Partitionen, die zum neuen Pool gehören sollen, und wählen Sie „Filesystem operations -> Unmount filesystem“. Danach verwenden Sie das Menü „Volume Groups -> Create Volume Group“, markieren die Datenträger mit Kreuzchen und vergeben einen Gruppennamen. Nach „OK“ finden Sie im Register „Group: [Name]“ den zusammengelegten Speicher, den Sie nun – am einfachsten nach Rechtsklick auf den grünen Balken – mit „Create logical volume“ als ein logisches Volume definieren. Nutzen Sie mit dem Schieberegler den maximalen Platz und vergeben Sie einen Volumenamen. Der Speicherbalken ändert nun seine Farbe und nach Rechtsklick darauf können Sie den Speicherplatz in das Dateisystem mounten. Dabei ist noch ein beliebiges Dateisystem zu wählen und der gewünschte Mountpunkt.

KDE-Manager für Laufwerkspartitionen (KVPM): Hier werden drei Laufwerke unter dem Namen „The_Big“ zusammengefasst. Das Gesamtvolume muss dann noch formatiert werden.

Datenträger im Bereitschaftsmodus

Festplatten lassen sich in den Ruhemodus schicken. Die Gnome-affinen Ubuntus inklusive Mint können mit Gnome-Disks („Laufwerke“) einstellen, wann sich eine Festplatte abschalten soll. Wählen Sie dort die gewünschte Festplatte aus, und gehen Sie im Menü auf „Laufwerkseinstellungen“. Auf der Registerkarte „Bereitschaft“ setzen Sie den Schalter auf „An“ und stellen die Zeit ein, nach der die Festplatte sich abschalten soll. Die Zeitspanne reicht von „Niemals“ bis „3 Stunden“. Das funktioniert neuerdings auch mit externen USB-Laufwerken.

Wenn Gnome-Disks fehlt, kann auch hdparm im Terminal den Bereitschaftsmodus konfigurieren. Ermitteln Sie zuerst mit

blkid

die Laufwerke, Bezeichnungen und UUID-Kennungen. Ist die gewünschte Festplatte beispielsweise „/dev/sdb“, dann aktivieren Sie mit diesem Befehl den Ruhezustand:

sudo hdparm -y /dev/sdb

Wenn das funktioniert, können Sie eine automatische Abschaltung festlegen:

sudo hdparm -S 180 /dev/sdb

Der Wert hinter „-S“ steht für 180 mal 5 Sekunden, also 900 Sekunden oder 15 Minuten. Verwenden Sie „-S 0“, wenn sich eine bestimmte Festplatte niemals abschalten soll (siehe auch: man hdparm). Diese Maßnahme wirkt allerdings nur bis zum nächsten Neustart. Für eine dauerhafte Änderung bearbeiten Sie die hdparm-Konfigurationsdatei:

sudo nano /etc/hdparm.conf

Fügen Sie im Editor folgende Zeile am Ende der Datei an:

/dev/disk/by-uuid/[UUID] { spindown_time = 180 }

Die UUID-Kennungen ermittelt das Kommando blkid.

Hinweis: Der Bereitsschaftsmodus ist nur bei Daten- oder Backupplatten sinnvoll. Auf der Festplatte mit der Systempartition finden ständig Laufwerkszugriffe statt – die Festplatte würde also nach dem Abschalten sofort wieder anlaufen. Die Folge wäre mehr Verschleiß statt weniger.

Datenfestplatten in den Ruhemodus schicken: Gnome-Disks beherrscht diese Aufgabe, notfalls ist dies aber auch über hdparm im Terminal zu steuern.

Linux-Verzeichnisstruktur

 /  Wurzelverzeichnis, bei vielen Dateimanagern als „Rechner“ bezeichnet  
 /boot  systemkritischer Ordner mit den zum Booten notwendigen Dateien: Kernel, Bootmanager und Ramdisk  „initramrd“ mit Treiberausstattung  
 /boot/grub  systemkritischer Ordner mit den Konfigurationsdaten für den Grub-Bootmanager; optionale Eingriffe in die Datei  grub.cfg nur für erfahrene Benutzer  
 /bin  systemkritischer Ordner mit den zentralen ausführbaren Programmen, die für den Systembetrieb notwendig sind   (etwa bash, chmod, login, lsblk, mount …);  s. a. /sbin und /usr/bin
 /cdrom  alter Mountordner für den Inhalt optischer Laufwerke, eigentlich obsolet (ähnlich das inzwischen seltene /floppy)  
 /dev  Systemverzeichnis für Gerätedateien: Alle erkannten Geräte sind hier konsequent als Datei abgebildet  
 /etc  zentrales Verzeichnis für alle systemweiten Konfigurationsdateien, zum Teil als Einzeldateien im Hauptverzeichnis /etc wie etwa sudoers (sudo-Rechte), fstab (Laufwerke), mime-types (Dateitypen), shadow (Konten und Kenn wörter), zum größeren Teil in Extra-Verzeichnissen – prominente Beispiele: 
  /etc/apache2 für die Konfiguration des Apache-Webservers 
  /etc/apt/ mit der Liste der angemeldeten Paketquellen (sources.list und /etc/apt/sources.list.d) 
  /etc/samba mit der Konfiguration des Samba-Servers und der Windows-Freigaben (smb.conf) 
  /etc/ssh mit der Konfiguration von Open SSH als Client (ssh_config) und Server (sshd_config)  
  /etc/X11 für Konfigurationen der grafischen Oberfläche  
 /home  Sammelordner für alle sämtliche Benutzerkonten (mit Ausnahme von root)  
 /home/[user]/  Home-Verzeichnis eines Benutzers mit typischen Unterordnern für Benutzerdaten („Dokumente“, „Bilder“ etc.)
  /home/[user] ist neben den temporären Mountordnern /media/[user] und /run/user/[Konto-ID] das einzige Ver zeichnis mit allen Rechten für den Benutzer inklusive Besitzrecht 
 /home/[user]/.cache  benutzerbezogener Zwischenspeicher hauptsächlich für Schriften, Bildminiaturen und Systemicons  
 /home/[user]/.config  wichtiger versteckter Sammelordner für benutzerspezifische Softwareeinstellungen (Desktop-einstellungen, Sprache, Autostart, Webbrowser, Mail, Mime-Dateitypen, Software aller Art) 
 /home/[user]/.local  weiterer Sammelordner für Desktop-Benutzereinstellungen, die Priorität über allgemeine Einstellungen erhalten,  zum Beispiel eigene oder geänderte Verknüpfungen (.desktop-Dateien) unter ../.local/share/applications
 /lost+found  enthält nach Dateisystemprüfungen mit fsck gerettete Dateifragmente (in der Regel nur für Forensiker verwertbar)  
 /media  Mountordner für Wechseldatenträger wie USB- oder DVD-Laufwerke, wird beim Automount grafischer Oberflächen nach Anschluss von Medien in der Regel als Mountpunkt genutzt (macht /cdrom und /floppy obsolet). Die Inhalte werden dabei unter /media/[user]/[Laufwerk] mit allen Rechten für den aktuellen Benutzer geladen.
 /mnt  optionaler Ordner für temporäres und statisches Mounten externer Datenträger wie USB- oder DVD-Laufwerke   (wird vom Automount auf heutigen Systemen nicht mehr genutzt, siehe /media)
 /lib  und /lib64   systemkritische Ordner mit unentbehrlichen Systembibliotheken (32 und 64 Bit). Weitere lib-Ordner mit System bibliotheken (etwa /usr/lib, /var/lib) sind für Anwendungssoftware notwendig, aber nicht systemkritisch
 /opt  optionaler Sammelordner für nachträglich installierte Programme, die nicht zum Standardrepertoire einer Linux-Distribution gehören    
 /proc  und /sys Sammelordner für dynamisch abgefragte System- und Hardwaredaten aller Art, insbesondere zu CPU, RAM,  Kernel, Datenträger und Prozesse;  /proc ist Informationsquelle für viele Systemtools, etwa für CPU- oder RAM-Abfragen (Beispiel-Quelldateien: cpuinfo, meminfo, modules, mounts, partitions, uptime)  
 /tmp  Sammelordner für temporär benötigte Dateien bei der Softwareausführung und bei installationen – das einzige  Verzeichnis, auf das alle Systemkonten uneingeschränkten Schreibzugriff haben   
 /root  Home-Verzeichnis des Pseudo-Kontos root;  falls root aktiviert und genutzt wird, entstehen dieselben Unterver zeichnisse für Benutzerdaten und Konfigationsdaten wie bei /home/[user]
 /run   dynamische Informationsablage für alle Programme (tmpfs-Ordner während der Systemlaufzeit)  
 /run/user/[user-id]/gvfs/  Mountordner für automatisch eingehängte Netzressourcen unter Gnome-artigen Desktops (Gnome, Budgie, Cinnamon, XFCE)  
 /usr  kein „User“- oder „Benutzer“-Ordner, sondern der umfangreiche Sammelordner für die nicht-systemnahe Anwen dungssoftware („User System Resources“), also die am Desktop meistgenutzen Programme  
 /usr/bin  enthält die meiste Anwendungssoftware für die grafische Oberfläche (vgl. /bin und /sbin)  
 /usr/lib  bevorratet die zugehörigen Systembibliotheken für nicht-systemnahe Anwendungssoftware  
 /usr/local  ergänzender Softwareordner: ausführbare Programme unter /usr/local/bin haben Vorrang gegenüber dem Pfad /usr/bin  
 /usr/share/applications  Sammelordner für Programmstarter, die in Menüs oder am Desktop angezeigt werden  
 /sbin  systemkritischer Ordner mit zentralen ausführbaren Programmen für die Systemverwaltung, die nur mit root- Recht laufen (etwa fdisk, fsck, hdparm, mkfs, parted …); s. a. /bin und /usr/bin
 /srv  gemäß FSH-Standard (Filesystem Hierarchy) der Standard-Mountordner für Datenträger auf Serversystemen,  wobei manche Serversysteme nach wie vor /mnt oder /media verwenden
 /var/log  Sammelordner für Systemprotokolle  
 /var/spool  Verzeichnis für abzuarbeitende Warteschlangen, in erster Linie Druckaufträge  
 /var/www/html  Standardordner für Apache- oder Nginx-Webdienste  
VIRTUELLE ORDNER
 computer:///  Übersicht über alle physischen Datenträger sowie der aktuell eingehängten Netzwerkfreigaben  
 applications:///  Übersicht der installierten (Gnome-)Programme  
 burn:///  Dateien, die für das Brennen auf CD/DVD vorgemerkt sind  
 fonts://  Übersicht über die installierten Schriften  
 preferences:///  Systemeinstellungen – gleichbedeutend mit dem Aufruf gnome-control-center  
 trash:///  Papierkorb – gleichbedeutend mit Klick auf „Papierkorb“ im Dateimanager  

Rtcwake automatisiert Systemstart

Systemstart und Shutdown können Sie komplett automatisieren: Das Tool rtcwake ist auf Linux Mint vorinstalliert und kann einen Rechner ausschalten (oder in einen ACPI-Ruhezustand zu versetzen) und zur gewünschten Zeit wieder starten. Das „rtc“ im Toolnamen steht für Real Time Clock und bezieht sich auf die physikalische Hardware-Uhr. Diese läuft auch, wenn der Rechner in einem Ruhezustand oder komplett ausgeschaltet ist und kann den Neustart auslösen, wenn ein definierter Zeitpunkt erreicht ist. Unter Linux ist dieser Zeitpunkt in der Datei „/sys/class/rtc/rtc0/wakealarm“ abgelegt, und das Tool rtcwake ist das Werkzeug, diesen Zeitpunkt vorzugeben. Im einfachsten Fall sieht ein Kommando so aus:

sudo rtcwake -m off -s 60

Der Befehl ist gut geeignet, um zu testen, ob die Hardware mitspielt (x86-Hardware praktisch immer, ARM-Rechner nicht immer). Der Schalter „-m“ bestimmt den ACPI-Modus. Mögliche Werte sind „standby“, „mem“, „disk“ oder „off“ (komplettes Ausschalten). Als zweiter Parameter ist hier „-s“ („seconds“) mit einer nachfolgenden Zeitangabe in Sekunden angegeben. Der obige Testbefehl wird also das System herunterfahren und nach einer Minute neu starten (60 Sekunden).

Als zweiter Parameter ist hier „-s“ („seconds“) mit einer nachfolgenden Zeitangabe in Sekunden angegeben. Der Testbefehl wird also das System in die Bereitschaft versetzen nach einer Minute neu starten (60 Sekunden). Obwohl mit Schalter „-t“ („time) auch eine exakte Zeitangabe möglich ist, empfehlen wir, den geplanten Neustart immer mit Parameter „-s […]“ anzugeben, selbst wenn es sich um viele Stunden handelt. Es ist wenig Mühe, etwa zehn Stunden in Sekunden umzurechnen (10*3600=36000).

Um Shutdown und Start zu automatisieren, kommt nun der Zeitplaner Cron ins Spiel: Nach dem Aufruf der Crontab-Editors mit

sudo crontab -e

schaltet folgender Crontab-Eintrag

0  22  *  *  *  /usr/sbin/rtcwake -m off -s 36000

den Rechner täglich um 22:00 Uhr ab und startet ihn nach 36000 Sekunden (10 Stunden) wieder – somit exakt um 8:00 Uhr.

Odroid-Miniserver (2019)

Wer meint, die koreanische Firma Hardkernel mit ihren diversen Odroid-Produkten („Open Droid“) sei ein typischer Raspberry-Trittbrettfahrer, liegt mindestens teilweise falsch. Die Firma gibt es schon länger und ihr erster Platinenrechner „Odroid-PC“ datiert aus dem Jahr 2011, also ein Jahr vor dem ersten Raspberry Pi. Richtig ist aber, dass Hardkernel früh und umtriebig auf den Erfolg des Raspberry Pi reagiert hat und seit 2012 die komplette Produktpalette als Raspberry-Konkurrenz ausrichtet. Der Raspberry-Boom veranlasste Hardkernel zur Fokussierung auf Mini-Server und Platinenrechner.
Die an sich vernünftige Kernstrategie war offenbar immer, für moderat höhere Preise deutlich mehr Leistung anzubieten als der Raspberry Pi. Die zahlreichen Odroid-Varianten der Jahre 2012 bis 2019 zeugen allerdings von hektischer Betriebsamkeit, die beim Konsumenten eine gewisse Ratlosigkeit hinterlässt, inwiefern sich die Produkte unterscheiden. Nachhaltigkeit und Weitblick war hier nicht zu erkennen, und diverse Odroid-Projekte kamen und starben wie Eintagsfliegen: Die sehr lange Spalte „Obsolete products“ auf der Herstellerseite http://www.hardkernel.com/main/products/prdt_info.php spricht für sich. Inzwischen hat Hardkernel seine Produktpalette konsolidiert. Der Durchblick ist heute einfacher, verlangt aber immer noch genaueres Hinsehen. Dies sollen die nachfolgenden Seiten leisten. Die aktuell noch gepflegten Odroid-Platinen verdienen diese Übersicht, da sie qualitativ und zumeist auch in der Komponentenzusammensetzung überzeugen. Eine Produktübersicht des Herstellers bietet die oben genannte Hardkernel-Webseite.

Verträgt der südkoreanische Hersteller Hardkernel, der die Odroids baut, noch mehr Konkurrenz? Die Odroid-Platinen kannibalisieren sich nämlich bereits ordentlich untereinander. Die zahlreichen Odroid-Varianten der Jahre 2012 bis 2019 beweisen viel innovatives Potential, aber keine nachhaltige Strategie. Der nächste Odroid in der jeweiligen Preisklasse ist quasi immer der Killer des letzten Odroid. Aber vielleicht ist das ja die Strategie – und beim Raspberry ja auch nicht anders. Im Unterschied zum Raspberry skalieren die Odroids aber gewaltig und bieten eine Auswahl für unterschiedliche Leistungsansprüche. Außerdem hat uns bislang jede Odroid-Hardware qualitativ und in der Komponentenzusammensetzung überzeugt. Ein eventueller Schwachpunkt ist die Systemsoftware.

Die Odroids: Allgemeine Vorbemerkungen

Für alle Odroid-Platinen gibt es eine Reihe von Linux- und Android-Betriebssystemen, die Sie herunterladen und mit den üblichen Werkzeugen auf Micro-SD schreiben. Anlaufstelle ist das Wiki https://wiki.odroid.com, das auch über die Hauptseite erreichbar ist (www.hardkernel.com). Sie finden in der linken Spalte die aktuellen Platinenmodelle, und unter dem einzelnen Modell jeweils den Eintrag „os_images“. Hier erscheinen dann die offiziellen Android- und Linux-Images, ferner unter „third party“ weitere inoffizielle, aber beachtenswerte Systeme wie etwa Dietpi oder Openmediavault.

Die Auswahl an Systemen ist insgesamt nicht üppig, aber jederzeit ausreichend: Ein ausbaufähiges LTS-Ubuntu, oft mit Mate-Desktop, ist für alle Platinen im Angebot. Problematischer als die Systemauswahl ist die Tatsache, dass ständig neue Odroid-Geräte die älteren verdrängen und diese dann Software-technisch nicht mehr gepflegt werden. So wird etwa der ältere, sehr brauchbare Odroid U3 längst nicht mehr verkauft und auch nicht mehr gepflegt. Über das letztaktuellste Ubuntu 16.04.6 (mit Update-Support bis 2021) auf dieser Platine wird daher wohl keine jüngere Version mehr hinausführen. Eine ähnliche Entwicklung ist für alle Odroids (außer H2) zu bedenken: Unter Umständen muss dann das Gerät ohne Updates weiterlaufen, was beim lokalen Heimserver kein ernstes Problem ist, aber jede Öffnung für den Internetzugriff verbietet.

Eine weitere Einschränkung gilt für alle Odroids: Die Platinen haben allesamt keinen WLAN/Bluetooth-Funkchip an Bord. Das ist letztlich konsequent, weil ein H2, N2, XU4 oder HC1 für Serveraufgaben prädestiniert ist, die nur mit verkabeltem Ethernet Sinn machen. Wer zusätzliches WLAN oder Bluetooth benötigt, muss dies über einen WLAN- oder Bluetooth-USB-Stick nachrüsten. Die Firma Hardkernel bietet dafür eigene Dongles, jedoch funktionieren auch alle anderen Linux-kompatiblen Dongles wie Edimax EW-7811UN, Asus N10 Nano oder CSL 300.

Deutscher Vertreiber für sämtliche Odroid-Platinen und Zubehör ist Pollin (www.pollin.de). Das Meiste finden Sie auch bei Reichelt (www.reichelt.de) und Amazon.

Kein Platinenrechner, sondern eher ein Ausbau-Barebone mit Intel-CPU: Der Odroid H2 ist flexibel mit RAM, eMMC-Karte oder NVME-SSD bestückbar, bootet aber auch via USB oder SATA.

Odroid H2: Ein Ausbau-Barebone

Der Odroid H2 wurde Ende 2018 erstmalig angeboten, war nach zwei Tagen ausverkauft und dann erst wieder ab Juli 2019 verfügbar. Das in mehrfacher Hinsicht außergewöhnliche Gerät gehört nicht wirklich in die Kategorie der Platinenrechner, sondern ist ein Ausbau-Barebone, der eher mit Zotac-Boxen oder Intel NUCs konkurriert. Dies zeigt sich schon an der Größe der Platine (11 mal 11 Zentimeter) und an der Tatsache, dass die typische GPIO-Leiste mit den programmierbaren Pins für Bastelprojekte fehlt. Der Odroid H2 ist ganz klar als Barebone für Heimserver oder Zweit-Desktops konzipiert.

Intel-CPU: Mit dem Intel Processor J4105 (Quadcore mit 1,5 bis 2,5 GHz) verlässt der Odroid H2 die sonst übliche ARM-Plattform. Diese Celeron-CPU auf der 130-Euro-Platine ist natürlich kein Gaming-Renner, kann aber mit älteren AMD Phenom/Athlon oder schwächeren Intel-i3-CPUs mithalten und ist jederzeit Desktop-tauglich. Aufgrund der x86-CPU gibt es keinerlei Einschränkungen hinsichtlich des Betriebssystems: Windows kann ebenso installiert werden wie jede Linux-Distribution. Angemessen ist ein leichtgewichtiges Ubuntu, mit dem sich der Odroid H2 geradezu spielt.

DDR4-RAM: Der Arbeitsspeicher kann je nach Bedarf auf zwei Bänken auf bis zu 32 GB bestückt werden (DDR4 SO-DIMM). Für eine der Platine angemessenen Rolle als Daten- oder Medienserver sollten aber 4 GB oder allenfalls 8 GB allemal ausreichen.

Anschlüsse: Für Serverrollen ist der Odroid H2 auch sonst bestens gerüstet: Zwei SATA-3.0-Ports und zweimal USB 3.0 (ferner zweimal USB 2.0) sorgen für schnellen Datentransfer auf angeschlossenen Festplatten. Für den Netztransport sind zwei schnelle Gigabit-Ethernet-Anschlüsse vorhanden, die auch einen Einsatz als Netzwerkbrücke zwischen zwei lokalen Netzen oder als Hardware-Firewall hinter dem Router anbieten. Unter halbwegs idealen Umständen messen wir bis zu 115 MB/s, die der Rechner als Samba-Server ausliefert, was sich dem theoretischem Maximum von Gigabit-Ethernet nähert.

Der Rechner besitzt ein Uefi-Bios wie ein PC und kann sein Betriebssystem von SATA, USB, eMMC-Karte oder NVM-Express-SSD booten. Ein Micro-SD-Einschub wie auf typischen Platinenrechnern ist nicht vorhanden und auch nicht nötig. Die Installation eines Betriebssystems erfolgt wie auf einem PC über ein Linux-Livesystem via USB-Stick oder über ein DVD-Laufwerk am USB-Anschluss. Für Monitoranschluss sind ein HDMI-Ausgang und ein Display-Port 1.2 (4K) vorhanden. Neben der Soundausgabe via HDMI gibt es auch noch analoge Aus- und Eingänge für Klinkenstecker.

Mit solcher Ausstattung kann die Platine locker mehrere Rollen erledigen: In unserem Fall arbeitet er mühelos als zentraler Samba- und SSH-Server, als Apache-Server für eine Dokumentenzentrale und als Kodi-Mediencenter für das TV-Gerät via HDMI.

Lautlos: Die lüfterlose Platine macht keinerlei Betriebsgeräusche und zeigt trotz passiver Kühlung moderate Temperaturen zwischen 40 und 55 Grad. Die Leistungsaufnahme liegt höher als bei Raspberry & Co bei etwa 5 Watt im Leerlauf, 7-8 Watt bei Last und gelegentlichen Spitzen bis zu 12 Watt.

Preise: Der Preis von 130 Euro darf nicht täuschen: Dafür gibt es nur die nackte Platine ohne Netzteil, ohne RAM, ohne Gehäuse, ohne Bootmedium, ohne Kabel. Um das Barebone-ähnliche Ausbau-Board zum Laufen zu bringen, sind folgende Ergänzungen einzuplanen: ein Netzteil (ca. 14 Euro), ein Gehäuse (ca. 12 Euro), 4 GB RAM (DDR4-SO-DIMM, ca. 50 Euro), eMMC-Karte mit 64 GB (ca. 55 Euro), eventuelle Kabel wie Displayport nach HDMI (10 Euro), SATA-Kabel (5 Euro). Es ist ratsam, den Kauf der Komponenten so abzusichern, dass am Ende alles passt. Der Vertrieb pollin.de kann da manche Zweifel beseitigen, insofern er das H2-taugliche Zubehör direkt anzeigt.

Der Gesamtpreis geht dann schnell Richtung 300 Euro, wobei die angeführten Beispiele bei RAM und eMMC sowohl nach oben wie nach unten zu skalieren sind. Eine schnelle eMMC-Karte ist optimal, aber optional, da der Odroid H2 auch reichlich andere Bootoptionen besitzt.

Odroid N2 auf großem Kühler: Das Beste an dieser Hardware sind 6-Kern-CPU, Coolness und geringer Stromverbrauch. Die Input/Output-Leistung ist nicht besser als beim Odroid XU4.

Odroid N2: Coole Platine

Nimmt man den beschriebenen Odroid H2 aus den genannten Gründen aus der Rechnung, ist der Odroid N2 das aktuelle Spitzenmodell der Odroid-Platinenrechner. Der seit Frühjahr 2019 erhältliche Odroid N2 versteht sich mit 40-poliger GPIO-Leiste auch als Bastelplatine, ist aber in erster Linie als Heimserver oder Zweit-Desktop konzipiert. Auffällig ist das Kühlkonzept der relativ breiten Platine, die komplett auf einem ebenso großen, passiven Kühlkörper sitzt.

6-Kern-CPU: Die Platine kombiniert sechs ARM-Kerne – zwei kleine Kerne (Cortex A53 mit 1,9 GHz) und vier große (Cortex A73 mit 1,8 GHz). Die Leistung ist spürbar, aber nicht dramatisch besser als beim neuen Raspberry. Mit dieser CPU und dem Mali-Grafikchip G52 liefert der Odroid N2 einen nahezu flüssigen Desktop. Beim Einsatz als Zweit-Desktop ist die Hardware dem Raspberry Pi 4 eindeutig überlegen.

Anschlüsse: Der Odroid N2 bietet kein SATA, aber viermal USB 3.0. Für den Netzverkehr gibt es einen Gigabit-Ethernet-Anschluss, womit der Rechner als Samba-Server bis zu 110 MB/s liefert. Weniger erfreulich ist die Leistung der USB-Ports, die sich per internen Hub einen USB-3.0-Kanal teilen. Dies führt beim lokalen Austausch zwischen diesen USB-Laufwerken zu eher enttäuschendem Durchsatz. Eine große Datenfestplatte ist daher die klügere Ausstattung als mehrere kleine, zumal diese einen zusätzlichen Hub erfordern.

Alternativ zur Micro-SD-Karte kann das Betriebssystem auch von einer schnelleren eMMC-Karte gebootet werden. Die Auswahl des Boot-Mediums erfolgt über einen kleinen Schalter auf der Platine. Zur Soundausgabe gibt es neben dem typischen HDMI-Ausgang (Standardgröße) einen analogen Ausgang für Klinkenstecker. Außerdem ist ein Infrarot-Empfänger an Bord.

Lautlos und kühl: Die mit 10 mal 9 Zentimeter relativ breite Platine auf dem großen passiven Kühler arbeitet lüfterlos und somit absolut lautlos. Das Kühlkonzept scheint überzeugend, da die Platine im Leerlauf nur 35 Grad meldet und unter Last kaum über 45 Grad zu heizen ist. Das ist auch haptisch anhand der offenen Platine leicht zu verifizieren, während man beim Raspberry Pi 4 die Finger besser weglässt. Das Gerät bestätigt seine Coolness auch beim Stromverbrauch: Nur 2 bis 3 Watt fordert der Leerlaufbetrieb und bei Last geht es maximal Richtung 5 Watt.

Für die Stromversorgung externer 2,5-Zoll-USB-Festplatten über die USB-Ports gilt Ähnliches wie beim Raspberry: Zwei Laufwerke sind bereits zu viel, spätestens dann, wenn die Laufwerke Arbeit bekommen. Ohne zusätzlichen, aktiven USB-Hub geht es also auch hier nicht.

Preise: Die Platine gibt es mit 2 oder 4 GB DDR4-RAM für circa 80 beziehungsweise 95 Euro. Wenn Kabel für HDMI und eine SD-Karte vorhanden sind, ist der Odroid N2 damit bereits vollständig ausgestattet. Das optionale Gehäuse für etwa 7 Euro ist eigentlich nur eine Abdeckung, die in die Schiene des Lüftersockels geschoben wird.

Odroid XU4: Das Auslaufmodell

Bis Ende 2018 noch Spitzenmodell gerät der Odroid XU4 durch die hauseigene Konkurrenz und den Raspberry Pi 4 zum Auslaufmodell. Die Platine hat gegen den Pi 4 nur noch schwache Argumente, und wem dieser nicht genügt, kann zum Odroid N2 greifen. Das ist fast bedauerlich, denn der XU4 hat sich im Server-Dauerbetrieb als äußerst robust und zuverlässig erwiesen. Solche Nachhaltigkeit als unermüdlicher Rechenknecht muss der Odroid N2 erst noch nachweisen. Desktop-tauglich ist der XU4 allerdings im Unterschied zum N2 definitiv nicht. Die besten Chancen hat die XU4-Hardware eventuell noch in ihren spezialisierten Varianten HC1 und HC2, die ebenfalls auf Odroid XU4 basieren (siehe unten).

CPU und RAM: Der Achtkerner arbeitet mit zwei Quadcore-CPUs, wobei je nach Auslastung der Vierkerner Cortex A15 mit 2 GHz oder der sparsamere Vierkerner Cortex A7 mit 1,4 GHz zum Zuge kommt. Mit standardmäßig zwei GB DDR3-RAM ist die Platine für den Serverbetrieb ausreichend bestückt.

Anschlüsse: Entscheidend für den Datendurchsatz ist die Kombination von USB 3.0 (zweimal) mit Gigabit-Ethernet. Die theoretischen 125 MB/s erreicht die Platine zwar nicht, aber 80 bis 90 MB/s sind maximal möglich. Als Boot- und Systemmedium kommt sowohl die typische Micro-SD-Karte als auch eine eMMC-Karte infrage. Die Auswahl des Medium erfolgt über einen kleinen Schalter auf der Platine. Für Erweiterungen und Bastellösungen gibt es zwei Pin-Anschlüsse (30 plus 12).

Mit und ohne Lüfter: Das Kühlkonzept des Odroid XU4 wurde seit seinem Erscheinen 2015 vielfach kritisiert. Von Platinenrechnern erwarten die Kunden lautlosen Betrieb. Der XU4 hat einen aktiven Lüfter, der seine kleinen Maße mit hoher Drehzahl ausgleicht. Das Geräusch ist nicht laut, aber aufgrund der hohen Frequenz unüberhörbar. Beim Einsatz als Medienserver im Wohnzimmer kann das durchaus stören. Daher hat Hardkernel den Odroid XU4Q mit passivem Kühlkörper nachgeschoben („Q“ für „quiet“). Die Variante ist etwas preiswerter, aber etwas leistungsärmer, weil die Platine hier häufiger auf die schwächere A7-CPU schaltet. Wer einen XU4 besitzt, kann den aktiven Lüfter auch durch den passiven Kühlkörper ersetzen, der als Einzelzubehör für etwa acht Euro verkauft wird.

Stromverbrauch: Die Platine kommt im Idle-Betrieb auf etwa 4 Watt und fordert bei Last und laufendem Lüfter bis zu 10 Watt.

Preise: Die Preise für den Odroid XU4 dürften demnächst purzeln. Bislang kostet er immer noch etwa 80 Euro, als lüfterloser XU4Q circa 75 Euro (www.pollin.de). Aktuelle Bundles liegen aber bereits unter 100 Euro und liefern Gehäuse, Netzteil, SD- und eMMC-Karte mit.

Odroid XU4 mit und ohne Lüfter: Die bewährte Platine bleibt mit Netzteil, Gehäuse, eMMC- und SD-Karte unter 100 Euro. Die lautlose XU4Q-Variante mit passiver Kühlung taktet etwas niedriger.

Odroid HC1/HC2: Kleine Heimserver

„HC“ steht für „Home Cloud“. Die beiden Odroid-Varianten basieren auf XU4 und sind hinsichtlich CPU, GPU, RAM und Gigabit-Ethernet identisch ausgestattet. Statt USB 3.0 (nur einmal USB 2.0) gibt es hier eine SATA-3-Schnittstelle für genau eine Festplatte oder SSD, die in das Alu-Gehäuse eingeschoben wird. HC1 und HC2 fokussieren auf einen kleinen, schnellen Netzwerkspeicher für private Zwecke. HC1 und HC2 haben kein HDMI oder sonstigen Monitor-Anschluss: Das System kann nur über das Netzwerk mit SSH erreicht und verwaltet werden.

Preise: Die lüfter- und lautlosen HC1 und HC2 kosten circa 60 und 65 Euro. Der einzige Unterschied der beiden Varianten ist das Alu-Gehäuse, das beim HC1 nur ein 2,5-Zoll-Laufwerk, beim größeren HC2 wahlweise eine 2,5- oder 3,5-Zoll-Festplatte aufnimmt. Das unentbehrliche Netzteil kostet circa 8 Euro.

HC1/2 („Home Cloud“) basieren auf dem XU4, haben aber einen SATA-Anschluss für eine Festplatte (HC1 nur 2,5 Zoll). Wo dies genügt, bietet die Hardware ein aufgeräumtes Mini-NAS.

Odroid C1/C2: Obsolet

Die soliden Platinen Odroid C1 und C2 waren 2015 mit Quadcore-CPU, 1 oder 2 GB RAM sowie Gigabit-Ethernet als Raspberry-Konkurrenz geplant. Sie konnten aber schon neben dem Raspberry Pi 3 B+ (Anfang 2018) nur noch aufgrund der schnelleren Ethernet-Schnittstelle bestehen – neben dem aktuellen Raspberry 4 wohl definitiv nicht mehr. Der Odroid C2 wird derzeit immer noch für knapp 55 Euro verkauft – Tendenz fallend. Die Pi-Variante mit 2 GB RAM kostet 50 Euro und schlägt den Odroid C2 (ebenfalls 2 GB RAM) in allen anderen Belangen.

Solide Platinen für kleine Aufgaben: Odroid C1/C2 eignen sich besonders für kleine Apache-Webdienste, dürften aber neben dem Raspberry Pi 4 ausgespielt haben.

Exkurs: X86 und ARM – ein CPU-Vergleich am Beispiel Odroid XU4

Die Octacore-CPU des Odroid XU4 mit 2 GHz klingt nach mächtig viel Leistung. Jedoch handelt es sich um zwei Quadcore-ARM-Einheiten, die je nach Anforderung zur schnelleren oder stromsparenderen umschalten. Vor allem aber darf man generell die Taktraten und die Kernzahlen von ARM-Prozessoren nicht annähernd den x86-CPUs von PCs und Notebooks gleichsetzen. Die kleine Tabelle zeigt, dass die Intel Atom-CPU eines 10 Jahre alten Netbooks immer noch knapp vor der ARM-Quadcore-CPU eines Raspberry 3 liegt. Die Platine Odroid XU4 lässt diese Netbook-CPU zwar deutlich hinter sich, kommt aber nicht annähernd an Notebook- und PC-Prozessoren heran. Unser Vergleich wurde mit Sysbench auf der Kommandozeile ausgeführt.

Zurück zur Linux-Übersichtsseite…

Buch-Server Calibre

Das Open-Source-Programm Calibre hat sich ganz auf die Verwaltung von E-Books spezialisiert. Für wirklich große Sammlungen lohnt sich Calibre als Server, der die Bibliothek über jeden Browser für alle Netzgeräte bereitstellt.

Mit der Verbreitung von Tablets gewinnen E-Books – oft im PDF-, MOBI-, CHM- oder EPUB-Format – immer mehr Freunde. Selbst bibliophile und konservative Leser sind leicht durch die unbestreitbaren Vorteile zu überzeugen, die E-Books auf einem handlichen Tablet bieten: Textgröße, Kontrast, Helligkeit lassen sich an jede Situation anpassen. Und auf einem Tablet passt eine ganze Bibliothek ins Handgepäck. Für eine opulente oder systematische Sammlung belletristischer und technischer Bücher ist aber die Aufbewahrung auf verstreuten Lesegeräten suboptimal: Neben der Frage „Was habe ich eigentlich wo (doppelt)?“ wird dort auch schnell der Speicher knapp. Eine ideale zentrale Lösung für das Heimnetz bietet die Software Calibre mit seiner Server-Komponente.

Calibre installieren und Bibliothek erstellen

Calibre gibt es für alle Betriebssysteme unter https://calibre-ebook.com/download. Diese Anlaufstelle ist auch für Linux zu empfehlen, weil eine Installation über die Paketquellen etwa unter Debian/Ubuntu/Mint mit

sudo apt install calibre

nur ältere Versionen anbietet. Für die lokale Nutzung auf einem Rechner spielt das keine große Rolle, aber gerade die Serverkomponente hat in den aktuellen Versionen funktional dazugelernt und kommt auch optisch wesentlich frischer daher. Verwenden Sie daher zur Installation diese Befehlskombination:

wget -nv -O-
https://download.calibre-ebook.com/linux-installer.py | sudo python -c
"import sys; main=lambda:sys.stderr.write('Download failed\n');
exec(sys.stdin.read()); main()"

Das komplexe Kommando kann von der oben genannten Downloadseite oder von hier ohne Tippaufwand direkt ins Terminal kopiert werden. Diese Installationsmethode funktioniert auch als Update einer älteren Version, wobei eine bereits bestehende Bibliothek erhalten bleibt. Calibre ist nach der Installation über das Desktop-Menü oder mit dem Aufruf calibre im Terminal zu erreichen.

Für den Aufbau und die Erweiterung einer Bibliothek dient die Schaltfläche „Bücher hinzufügen“. Den Massenimport von heterogenen Formaten und ganzer Verzeichnisebenen ermöglicht die Unteroption „Bücher aus verschiedenen Verzeichnissen […], jede e-Book-Datei ist ein anderes Buch“. Damit integrieren Sie unstrukturierte Sammlungen von PDF-, HTML-, EPUB- und Office-Formaten in die Calibre-Datenbank. Beachten Sie, dass Calibre alle Dateien physisch kopiert und standardmäßig im Ordner ~/Calibre-Bibliothek/ einsammelt. Beim Import aus unstrukturierten Quellen wird die Software versuchen, aus Dateinamen und Metadaten Informationen zu beziehen, um jedes Buch sinnvoll zu katalogisieren. Fehler aufgrund unzulänglicher Metadaten sind beim Massenimport unvermeidlich, können aber später über „Metadaten bearbeiten“ manuell und mit der Hilfe von Online-Diensten („Metadaten herunterladen“) korrigiert werden.

Die Suche bestimmter Titel erfolgt im Suchfeld über dem Hauptfenster. Weitere Filtermöglichkeiten bieten Kategorien in der linken Navigationsleiste wie „Autoren“, „Formate“, „Bewertung“ oder „Schlagwörter“. Zum Lesen eines markierten Titels verwenden Sie die Schaltfläche „Bücher öffnen“.

Da es nicht primärer Gegenstand dieses Beitrags ist, die zahlreichen Filter-, Konvertierungs- und Einstellungsoptionen der komplexen Software zu erläutern, verweisen wir an dieser Stelle auf das größtenteils deutschsprachige Online-Handbuch unter https://manual.calibre-ebook.com/de/.

Calibre als Lektüre-Server im Netz

Ist eine Bibliothek erst einmal eingerichtet, kann Calibre diese für das Netzwerk freigeben. Für den Start der Serverkomponente genügt der Klick auf „Verbinden/Teilen -> Inhalteserver starten“. Danach informiert Sie ein weiterer Klick auf „Verbinden/Teilen“, unter welcher Adresse der Blbliotheksserver zu erreichen ist. Eine Angabe wie „192.168.178.10, port 8080“ zeigt, dass jeder Browser im lokalen Netz mit der Adresse „192.168.178.10:8080“ zum Calibre-Server gelangt. Wie bei jedem Server ist es auch hier von Vorteil, diese IP-Adresse statisch zu setzen (über den Router), damit Sie sich künftig jederzeit mit einem Lesezeichen verbinden können. Der Calibre-Server kann unter „Einstellungen -> Netzwerkserver“ detailliert konfiguriert werden. Falls nötig, gibt es unter „Benutzerkonten“ auch eine Benutzerverwaltung mit Zugriffskennwörtern.

Auf Client-Seite ist das wichtigste Werkzeug das Lupensymbol im Seitentitel. Im einfachsten Fall geben Sie im Suchfeld einen Autoren- oder Titelnamen ein. Die Treffer werden mit ihrem Titelbild angezeigt, und ein Klick darauf bietet Detailinformationen sowie die Optionen „Lesen“ und „Herunterladen“. Für die Option „Lesen“ wechselt der Browser automatisch in den Vollbildmodus.

Bei einer umfangreichen und gut gepflegten Calibre-Bibliothek können Sie unterhalb des Suchfeldes die Suchkategorie eingrenzen und etwa nur in der Kategorie „Schlagwörter“ nach einem bestimmten Begriff suchen oder unter „Bewertung“ nach einem speziellen Rating.

Calibre-Server „headless“: Die bislang beschriebenen Einrichtungs- und Server-Möglichkeiten orientierten sich an der grafischen Oberfläche von Calibre. Für den grundsätzlichen Aufbau der Bibliothek und insbesondere für Nachbesserungen an den Meta-Informationen ist die grafische Oberfläche in der Tat dringend zu empfehlen. Calibre bietet jedoch darüber hinaus Kommandozeilenwerkzeuge, die eine vollständige Steuerung über eine SSH-Konsole ermöglichen. Somit kann der Lektüre-Server auch auf einem Platinenrechner ohne Monitor und Tastatur laufen (headless). Der wichtigste Befehl

calibre-server /home/ha/Calibre-Bibliothek/

startet die Server-Komponente und ist im Prinzip gleichbedeutend mit dem Menüpunkt „Verbinden/Teilen -> Inhalteserver starten“ an der grafischen Oberfläche. Der Befehl gibt nur den einfachsten Einsatz wieder, ist aber für das Heimnetz in der Regel völlig ausreichend. Die Hilfeseite

calibre-server --help

informiert darüber, dass Sie auf der Kommandozeile alles steuern können, was auch auf der grafischen Oberfläche unter „Einstellungen -> Netzwerkserver“ zu finden ist.

Für den Ausbau und die Verwaltung der Bibliothek ist das mächtige Kommandozeilenprogramm calibredb zuständig. Der wichtigste Schalter „add“ kann alles, was die Optionen unter „Bücher hinzufügen“ auf der grafischen Oberfläche anbieten. So importiert der Befehl

calibredb add --recurse /media/ha/Data/PDFs

alle E-Book- und Textformate, die im angegebenen Pfad liegen, in die Calibre-Bibliothek. Weitere add-Optionen zeigt die Hilfeseite calibredb add –help undden Gesamtumfang des Tools calibredb der Befehl calibredb –help. Theoretisch lässt sich damit ein Calibre-Server von Anfang an und vollständig ohne Oberfläche betreiben – wirklich komfortabel ist das allerdings nicht. Wir empfehlen daher, die Basis im grafischen Programm zu legen. Der Serverstart und gelegentliche Nachbesserungen bereiten hingegen über das SSH-Terminal im Headless-Betrieb keine Mühe.

Calibre-Bibliothek übers Netzwerk durchsuchen: Die Suchergebnisse werden mit Buchtitel angezeigt, nach einem Klick darauf erscheinen weitere Optionen.
„Lesen“ oder „Herunterladen“: Nach Auswahl eines Buchtitels kann die Lektüre beginnen. Beim direkten „Lesen“ ist Voraussetzung, dass der Browser das Format versteht.

Der Google-Stop

Wer jahrelang unbekümmert PCs und Smartphones mit Google-Konto nutzt, wird für Google zum offenen Buch. Dagegen hilft nur Kontrolle, disziplinierter Gebrauch der Dienste und sorgfältige Konfiguration der Einstellungen.

Ein digitales Leben ohne die Datenkrake Google? Möglich ist vieles, aber dieser Vorsatz wäre ein anstrengendes Unterfangen – und für Besitzer von Android-Smartphones gar unmöglich. Klüger als ein ideologisches „Anti-Google“ ist die datenschutzbewußte Nutzung der Google-Angebote. Denn Google beherrscht sein Handwerk: Suchmaschine, Browser Chrome, Mail, Drive, Docs und Tabellen, Messenger Allo, Netzwerk Google+, Maps und Earth, Android – technisch ist der Google-Kosmos meistens nicht zu überbieten. Alternativen gibt es zwar für alles, aber Google ist fast überall schneller, präziser, vernetzter oder schlicht komfortabler. Daher die pragmatische Konsequenz: Google zu nutzen bringt Vorteile – und die Nachteile lassen sich durch Disziplin minimieren.

1. Der Überblick: Das weiß Google über Sie

Haben Sie noch den Überblick, was Sie alles an Google-Diensten nutzen? Erste Anlaufstelle für eine Übersicht, die vielleicht längst vergessene Aktivitäten wieder ans Licht befördert, ist das Dashboard:

https://myaccount.google.com/dashboard

Hier geht’s ins Detail, Dienst für Dienst. Wenn Sie diese Dienste durchgehen und dabei Altlasten finden, die Sie heute weder Google noch der Öffentlichkeit anvertrauen möchten, dann entfernen Sie diese Inhalte, gegebenenfalls auch aus dem Papierkorb. Erste Kandidaten für eine kritische Durchsicht sind Google Drive und Google Fotos. Bei den meisten aufgeführten Diensten gibt es nach dem Aufklappen ein Menü mit der Option „Daten herunterladen“. Dies kann sowohl dem besseren Überblick dienen als auch der lokalen Sicherung, bevor Sie im Google-Dienst aufräumen.

Eine umfassendere Methode, alles einzusammeln, was Google an Daten von Ihnen besitzt, ist ein Download aller Daten („Takeout“) aus allen Diensten. Dafür gibt es diese beiden Adressen:

www.google.com/settings/takeout

https://takeout.google.com/settings/takeout/light

Wer genau wissen will, was Google über ihn weiß, kann ein Archiv sämtlicher Daten anfordern. Die Durchsicht dieser Daten wird oft zur verblüffenden Zeitreise.

Beide erlauben per Mausklick die Auswahl aller oder einiger Google-Dienste, wobei die erste Adresse übersichtlicher ist und die Wahl von Archivformat und „Übermittlungsmethode“ vorsieht. Beachten Sie, dass der vollständige Download aller bei Google gespeicherten Daten inklusive Google Mail, Google Drive, Google Fotos erhebliche Datenmengen ergeben kann. In solchen Fällen ist es klug, jene Dienste, deren Daten man durch tägliche Nutzung im Griff hat, vom „Takeout“ auszunehmen. Interessant ist ja, was Google ohne aktive Mitwirkung des Nutzers ansammelt.

Wenn Sie einige Jahre mit einem Google-Konto, mit mehreren Geräten und eventuell auch mit GPS-Chip im Smartphone oder Tablet unterwegs waren, wird Sie das Ergebnis eines „Takeouts“ bedenklich stimmen. Die Summe dessen, was Sie als Kontakte pflegen, was Sie allgemein in Google, Youtube und Maps, spezieller in Google Shopping und im Play Store suchen, was Sie im Kalender vermerken, als Web-Lesezeichen ablegen, auf Drive und Google Fotos speichern, ergibt ein sehr präzises Interessensprofil. Dazu kommen dann noch Bewegungs- und Reisedaten, die das Smartphone-GPS anliefert. Sie erhalten nach dem Auspacken des Takeout-Archivs eine sauber organisierte Verzeichnisstruktur, wobei die in Ebene 1 angezeigten Elemente wie „Drive“, „Google Fotos“, „Kalender“, „Kontakte“ oder „Notizen“ noch die geringsten Überraschungen offenbaren. Immerhin werden Sie einiges antreffen, was Sie längst für gelöscht hielten, und ein Blick unter „Youtube“ könnte zur verblüffenden Zeitreise werden, was Sie dort über die Jahre gesucht haben. Im Ordner „Meine Aktivitäten“ finden Sie weitere aufschlussreiche Protokolle, die Sie in dieser Dichte sicher nicht auf dem Radar hatten: Unter „Anzeigen“, „Bildersuche“, „Google-Suche“, „Maps_Timeline“, „Shopping“ sammelt Google über Jahre, wann Sie sich wo für welche Inhalte, Orte und Produkte interessiert haben.

2. Die allgemeinen Google-Einstellungen

Auf einem Android-Smartphone unter „Verbindungen -> Standort“) den Google-Standortverlauf und die Google-Standortfreigabe abzuschalten, ist einfach. Ansonsten aber sind Nutzerdaten das Kapital von Google, und das gibt Google nur ungern her. Das Versprechen, mit einem Konto den ganzen Google-Kosmos in der Hand zu haben, gilt für die Nutzung, nicht aber für die Einstellungen, um diese Nutzung zu kontrollieren. Hier schickt uns Google von einem kleingliedrigen Detail zum nächsten, auf dass wir uns orientierungslos verlaufen. Beste Anlaufzentrale ist noch die Adresse

https://myaccount.google.com/

oder gleich die Unterseite https://myaccount.google.com/privacy#. Auf der genannten Hauptseite ist der datenschutztechnisch wichtigste Punkt „Google-Aktivitäten verwalten“ (Mitte). In der rechten Spalte finden Sie auch noch die radikale Option „Konto oder Dienste löschen“, um sich von dem einen oder anderen Google-Service komplett zu verabschieden. Die Option „Google-Aktivitäten verwalten“ führt über einen Zwischenschritt zu dieser Adresse:

https://myaccount.google.com/activitycontrols

Hier gibt es fundamentale Optionen, um Web-Protokolle und Standort-Protokolle ab sofort abzuschalten („pausiert“). Wenn Sie darüber hinaus die bereits bestehenden Protokolle löschen möchten, bringt Sie der Link „Aktivitäten verwalten“ zu dieser Adresse:

https://myactivity.google.com/myactivity

Hier klicken Sie links oben auf das Menü, wählen „Aktivitäten löschen nach“ und definieren unter „Nach Datum löschen“ den Zeitraum. Es gibt auch die Tabula-Rasa-Option „Gesamt bisher“.

Die Videoplattform Youtube hat ihre eigene Adresse, um ihre Protokoll zu löschen. Unter

https://www.youtube.com/feed/history

lassen sich das Wiedergabe- und das Suchprotokoll, ferner auch Kommentar-Aktivitäten löschen. Was sich in diesen Protokollen alles angesammelt hatte, finden Sie nur über ein Takeout heraus (Punkt 1).


Fundamentale Google-Stopper unter https://myaccount.google.com/activitycontrols: Suchprotokolle und Standardprotokolle sind hier per Klick abzuschalten.

3. Optionen im Browser Chrome

Chrome/Chromium muss nicht sein, da es mit Firefox eine bewährte, moderne Alternative gibt. Aber auch in Google Chrome kann man die Google-Detektive abhängen. Was Chrome oder andere Browser als Verlaufs-, Autofill-, Lesezeichen-, Passwort-Daten und sonstiges lokal speichern, ist zunächst unkritisch. Zu Google’s Big Data tragen diese Daten erst bei, wenn die – unbestritten praktische – Synchronisierung aktiviert ist. Standardmäßig verschlüsselt der Google-Browser dabei nur die Online-Kennwörter, alles andere kann Google auf seinem Server auswerten. Aber unter „Einstellungen -> Synchronisierung“ gibt es die zusätzliche Option „Alle synchronisierten Daten […] verschlüsseln“, bei der Sie ein Kennwort zur Sync-Verschlüsselung vergeben, das unabhängig vom Google-Kennwort ist. Der daraus resultierende Komfortverlust ist nicht gravierend, da Sie dieses Kennwort auf jedem weiteren Gerät nur ein einziges Mal eingeben müssen. Alle Daten landen dann verschlüsselt auf dem Google-Server, der Schlüssel dazu (Kennwort) verbleibt auf den lokalen Geräten.

Wer auf das Google-Suchprotokoll nicht verzichten kann, sollte sich für persönliche Recherchen, die weder Google noch Dritte etwas angehen, zumindest eine Ad-Hoc-Maßnahme angewöhnen: Das Suchen mit Google im „Inkognito-Fenster“ (Tastenkombination Strg-Umschalt-N) hinterlässt keine Daten im Suchprotokoll und unterbindet auch das Tracking der Website-Betreiber, die Sie gemäß Ihren Produktrecherchen danach mit Werbung bombardieren.

Die Synchronisierung in Google Chrome verschlüsseln: Diese Maßnahme hält Google von Ihren Lesezeichen, Autofill- und Verlaufsdaten fern.